Advertisement

静息态磁共振图像数据处理算法程序 REST_V1.8_130615

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
REST_V1.8_130615是一款专为静息态功能磁共振成像(rs-fMRI)设计的数据预处理软件,能够高效完成包括头动校正、去噪等一系列关键步骤,助力科研人员深入探索大脑神经网络。 功能磁共振成像(fMRI)数据处理工具使用统计参数映射方法和独立成分分析方法对fMRI进行了分析。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • REST_V1.8_130615
    优质
    REST_V1.8_130615是一款专为静息态功能磁共振成像(rs-fMRI)设计的数据预处理软件,能够高效完成包括头动校正、去噪等一系列关键步骤,助力科研人员深入探索大脑神经网络。 功能磁共振成像(fMRI)数据处理工具使用统计参数映射方法和独立成分分析方法对fMRI进行了分析。
  • DTI
    优质
    磁共振DTI(扩散张量成像)数据处理是指对获取的人脑白质纤维束图像进行分析的技术过程,旨在揭示大脑神经纤维的方向和完整性,为神经系统疾病研究提供重要信息。 完整的DTI处理方法非常实用,并包含纤维追踪的技术。
  • ADNI_RS_FMRI_Analysis:ADNI功能分析脚本
    优质
    ADNI_RS_FMRI_Analysis是一款专门用于处理和分析阿尔茨海默病神经影像学倡议(ADNI)项目中获取的静息态功能磁共振成像(rs-fMRI)数据的脚本。该工具旨在为研究人员提供一种有效的方法,以深入理解大脑在休息状态下的活动模式及其与神经系统疾病的关系。 ADNI静止状态功能磁共振成像分析脚本。
  • 优质
    核磁共振图像数据是指通过核磁共振成像技术获取的人体内部结构信息的数据集合,广泛应用于医学诊断和研究中。 关于膝盖的MRI(核磁共振)图像数据,文件格式为*.dcm,这是标准的dicom文件。可以直接使用MATLAB中的dicomread()函数进行读取。
  • 分割
    优质
    磁共振图像分割是指通过计算机算法将MRI(磁共振成像)图像中的不同组织或结构区分开来,以便于医学诊断和研究分析。 模糊聚类法可以用于分割MRI图像,并且有相关的论文和Matlab源码可供参考。
  • 脑部
    优质
    本项目聚焦于磁共振成像技术在脑部疾病诊断与研究中的应用,通过分析大量脑部MRI数据,探索大脑结构和功能特征。 通过MRI扫描获取的人体大脑图像可用于医学影像分析和三维重建。
  • 脑部
    优质
    磁共振脑部数据是指通过磁共振成像技术获得的人类或动物大脑的详细图像信息,用于研究和诊断神经系统疾病。 通过MRI扫描获取的人体大脑图像可用于医学影像分析和三维重建。
  • 基于多模的脑肿瘤自动分割研究
    优质
    本研究致力于开发一种利用多模态磁共振技术的先进算法,旨在提高脑部肿瘤图像自动分割的精确度与效率,为临床诊断提供有力支持。 脑肿瘤图像自动分割面临的主要挑战是肿瘤形态多样且类别不平衡严重,这使得传统的卷积神经网络难以生成高精度的分割结果。为解决这些问题,在原始3D-Unet的基础上提出了一种改进模型,该模型采用混合膨胀卷积模块替代常规卷积模块,以此方式指数级地扩大了感受野,并减少了网络深度以避免上采样时无法恢复小目标的问题。此外,还用混合损失函数取代原有的Dice损失函数,增强了对稀疏类别分类错误的惩罚力度,促使模型更好地学习这些错误样本。实验结果显示,混合膨胀卷积模块和混合损失函数分别提高了整个肿瘤区域及核心区域的预测精度,并改进了脑肿瘤自动分割的各项性能指标。
  • 功能的技术与
    优质
    本课程聚焦于介绍功能磁共振成像(fMRI)技术及其数据分析方法,旨在帮助学生掌握大脑活动测量和解读的基础知识。 中国科学院心理研究所脑高级功能研究实验室的马力飞教授讲解了关于功能磁共振成像技术及其数据的相关内容。
  • PPT课件
    优质
    本PPT课件详细讲解了磁共振成像的基本原理、发展历程及应用领域,旨在帮助学习者掌握MRI技术的核心知识和临床价值。 磁共振成像(Magnetic Resonance Imaging, MRI)是一种非侵入性的医学影像技术,利用原子核在磁场中的共振现象来生成体内组织的详细图像。MRI的基本原理涉及电学、磁学、量子力学以及高等数学和初等数学等多个领域的科学知识。 其核心在于主磁体,用于产生稳定且高度均匀的磁场。磁场强度通常以特斯拉(Tesla, T)为单位衡量,例如0.35T至3T或更高。更强的磁场意味着更高的图像质量,因为信噪比(Signal-to-Noise Ratio, SNR)会随之提高。主磁体分为永磁、电磁常导和超导三类,其中超导型提供最强的磁场强度,并且有开放式和封闭式设计以适应不同的临床需求。 梯度线圈是MRI系统中的关键组件之一,负责空间定位与信号产生。通过在X、Y、Z三个轴向施加可变梯度场来确定氢原子(主要探测对象)的确切位置。高精度的性能参数如场强和切换率直接影响成像速度及图像质量。这使得快速成像技术成为可能,例如回波平面成像(EPI) 和 快速自旋回波(FSE) 序列。 脉冲线圈用于发射射频脉冲以激发氢原子核,并接收它们释放的信号;计算机系统则负责处理这些信号并重建出二维或三维组织图像。理解MRI的工作原理需要掌握量子力学中的能级和磁矩,以及电磁波与物质相互作用的基础知识。 在数学方面,傅里叶变换用于将原始射频信号从时间域转换到频率域以解析不同组织的特性;同时,图像处理算法如重建技术依赖于线性代数及微积分等理论的支持。MRI结合了物理学、工程学和计算科学等多个领域,在氢质子在主磁场中的预cession受到射频脉冲激发后产生信号,并通过梯度场作用下进一步形成可视化图像。 因此,深入理解MRI的基本原理对于操作设备以及正确解读其生成的医学影像至关重要。