Advertisement

IV转换电路原理图及PCB库.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含IV转换电路的原理图设计及相关PCB元件库文件,适用于电子工程师和学生进行电路分析与硬件开发。 I-V转换放大器、跨阻放大器以及光电信号放大器的原理图及PCB设计分析表明,最简单的I-V转换方式是通过串联一个电阻实现(如图a所示)。对于大电流情况,可以使用采样电阻R来完成这一过程,并结合运放进行信号放大或射随输出以供ADC模块直接采集。然而,在这里我们要讨论的是微弱电流的I-V转换方法,通常采用跨阻放大电路的形式(如图b)。 在设计跨阻放大器时,重要的一点是并非所有的运算放大器都适用于这种应用场合。为了获得最佳性能,应选择具有高输入阻抗特性的运放,并根据待检测电流大小来挑选合适的芯片类型。对于nA至uA级别的微弱电流测量,推荐使用CMOS类型的运放,例如TLC2201等;而对于更小的电流(比如在nA以下),则需要选择JFET型的运算放大器,这类运放通常具有极高的输入阻抗和低偏置电流的优点。综合考虑性价比等因素后,在实际应用中选择了AD825芯片作为跨阻放大器使用。 该款AD825芯片具备非常低的偏置电流(仅为20pA)以及高达5*10^11欧姆的输入阻抗,非常适合用于微弱电流信号的检测和放大。具体参数详情可以参考相关数据手册获取更多信息。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • IVPCB.zip
    优质
    本资源包含IV转换电路的原理图设计及相关PCB元件库文件,适用于电子工程师和学生进行电路分析与硬件开发。 I-V转换放大器、跨阻放大器以及光电信号放大器的原理图及PCB设计分析表明,最简单的I-V转换方式是通过串联一个电阻实现(如图a所示)。对于大电流情况,可以使用采样电阻R来完成这一过程,并结合运放进行信号放大或射随输出以供ADC模块直接采集。然而,在这里我们要讨论的是微弱电流的I-V转换方法,通常采用跨阻放大电路的形式(如图b)。 在设计跨阻放大器时,重要的一点是并非所有的运算放大器都适用于这种应用场合。为了获得最佳性能,应选择具有高输入阻抗特性的运放,并根据待检测电流大小来挑选合适的芯片类型。对于nA至uA级别的微弱电流测量,推荐使用CMOS类型的运放,例如TLC2201等;而对于更小的电流(比如在nA以下),则需要选择JFET型的运算放大器,这类运放通常具有极高的输入阻抗和低偏置电流的优点。综合考虑性价比等因素后,在实际应用中选择了AD825芯片作为跨阻放大器使用。 该款AD825芯片具备非常低的偏置电流(仅为20pA)以及高达5*10^11欧姆的输入阻抗,非常适合用于微弱电流信号的检测和放大。具体参数详情可以参考相关数据手册获取更多信息。
  • ADPCB
    优质
    本资源提供详细的AD转换电路PCB原理图,涵盖ADC选型、接口设计及电源管理等关键内容,适用于电子工程学习与实践。 这段文字描述的内容是关于AD模数转换电路原理图与PCB板设计,并包含完整的Altium Designer工程文件。
  • VI IV
    优质
    VI IV转换电路是一种将电压信号(VI)转化为电流信号(IV)的电子电路设计。这种电路在传感器接口、放大器输入级以及各种测量和控制系统中扮演重要角色,通过精确控制电流输出来实现高精度的电信号处理与传输。 使用运算放大器可以轻松搭建将电流转换为电压以及将电压转换为电流的电路,这对于工业测试和测量中的信号传递过程非常有用。
  • cyclone IV
    优质
    《Cyclone IV电路图原理》是一份详细介绍Altera Cyclone IV系列FPGA内部结构和工作原理的技术文档,适合电子工程专业的学生和技术人员参考学习。 cyclone_IV原理图及使用EP4CE10E22C8芯片的电路图一份,仅供参考。
  • 232485PCB
    优质
    本项目提供详细的232转485转换器电路设计资料,包括电路图、PCB布局及原理图,适用于电子通信领域中RS-232与RS-485接口间的互换需求。 在电气工作中经常会遇到232转485电路的应用。我已经使用DXP软件绘制了该电路图,并制作了PCB板。
  • 智嵌STM32F407VET6(含PCB
    优质
    本资源提供详尽的STM32F407VET6电路设计图纸,包含原理图和PCB元件库,适用于深入学习与开发基于该微控制器的应用项目。 智嵌物联STM32F407VET6板子原理图(包括原理图库和PCB库)。
  • AD694PCB布局
    优质
    本资源提供AD694芯片的应用电路图和详细的PCB布局设计,旨在帮助工程师理解和优化模拟信号处理电路的设计与实现。 ### AD694转换电路图和PCB设计详解 #### 一、AD694概述 AD694是一款高性能的模拟开关与多路复用器集成电路,在信号处理、数据采集系统以及测试测量设备等领域得到广泛应用。该器件具备低导通阻抗、宽带宽、快速切换时间和低功耗等特点,适用于需要高速度和高精度的应用场景。 #### 二、转换电路图解析 ##### 2.1 设计软件介绍 使用Altium Designer 6.9绘制的电路图确保了设计的专业性和准确性。这款电子设计自动化(EDA)工具支持原理图设计、PCB布局以及3D机械设计等功能,有助于提高设计方案的质量。 ##### 2.2 电路图设计要点 结合AD694的特点和应用需求,以下是转换电路的设计关键点: - **电源电压选择**:工作电压范围为±5V至±18V。根据具体的应用环境来选定合适的电源电压。 - **输入输出匹配**:为了减少信号反射与失真现象,需要合理设计输入输出端的阻抗匹配网络,常用的包括电阻、电容或变压器等元件。 - **信号路径优化**:考虑到AD694高速特性带来的挑战,在布线时应尽量减小寄生效应,并保持足够的间隔以降低串扰风险。 - **接地设计**:良好的接地系统可以有效减少噪声干扰。在布局上需注意各部分的连接,确保系统的稳定运行。 #### 三、PCB图设计要点 ##### 3.1 层次结构规划 对于AD694转换电路的设计,多层PCB是优选方案之一,因为它能够提供更好的信号屏蔽效果和电源地平面的布局优化。这一步骤旨在通过内部层来实现更佳的电磁兼容性。 ##### 3.2 元件布局 合理的元件放置直接影响到整个系统的性能及成本效益。在进行元件布局时应注意以下几点: - 关键器件如AD694应置于中心位置,便于布线和信号传输。 - 尽量将电源与地平面靠近布置,形成稳定的参考基准面。 - 高速线路应当远离边缘区域以减少电磁干扰。 ##### 3.3 布线规则 正确的走线方式对于保证PCB性能至关重要。具体包括: - 使用差分对布线进行高速信号传输,提高信号完整性。 - 尽量使各条导线保持短直,并避免不必要的弯折。 - 控制线路阻抗匹配,通过调整宽度和间距来实现。 ##### 3.4 过孔与焊盘设计 过孔用于连接不同层间的走线,而焊盘是元件与PCB之间的接合点。在设计时需注意: - 根据引脚尺寸选择合适的大小。 - 对于高频信号路径应采用较小的过孔以减少寄生效应的影响。 - 确保焊盘周围有足够的空间便于焊接操作。 #### 四、实践应用建议 - 在制造PCB之前,进行一次模拟仿真检查电路性能是否达到预期目标。 - 选择高质量材料和工艺标准制作,确保成品的一致性和可靠性。 - 对于复杂设计考虑采用专业PCB制造服务以获得更佳效果。
  • Smoothieboard PCB
    优质
    本资料包含Smoothieboard的完整电路原理图和PCB布局文件,适合进行硬件开发与定制,助力3D打印、CNC和其他自动化设备控制。 Smoothieboard的电路原理图和PCB图提供了详细的硬件设计信息。这些文档帮助用户更好地理解Smoothieboard的工作原理,并支持进一步的设计与开发工作。
  • CH340 USBTTLPCB文件-方案
    优质
    本项目提供详细的CH340 USB转TTL电路设计资源,包括原理图和PCB文件。适用于电子开发与硬件爱好者学习USB至串行通信的转换机制。 USB转TTL CH340原理图及PCB文件提供了详细的电路设计资料。
  • ADC/DAC的设计 包含PCB
    优质
    本项目专注于设计一款高性能的ADC/DAC转换电路,并提供详细的PCB布局和原理图。通过优化信号处理路径,确保了高精度的数据转换能力。 这是2009年电子设计大赛培训期间制作的作品。使用了Protel 99 SE工具。ADC部分采用了AD9280芯片,DAC部分则使用了AD9762芯片。运放选用的是AD8052,并通过无源滤波器实现滤波功能。作品包含原理图和PCB图设计,凝聚了我的心血。