Advertisement

PowerCtrlBoard.rar_3.7V锂电池电源管理电路设计_基于STM32的锂电池保护与管理

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一种针对3.7V锂电池的高效电源管理解决方案,采用STM32微控制器为核心,实现电池保护、监测及智能管理功能。 3.7V锂电池充电升压方案包括1A的充电电流以及两个5V输出通道:一个为2A,另一个为3A。整个系统由STM32进行控制,并具备电池电压检测、过充保护、过温保护及充电状态指示灯功能。该方案已经通过打样验证(原理图文件格式为AD13)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PowerCtrlBoard.rar_3.7V_STM32
    优质
    本资源提供了一种针对3.7V锂电池的高效电源管理解决方案,采用STM32微控制器为核心,实现电池保护、监测及智能管理功能。 3.7V锂电池充电升压方案包括1A的充电电流以及两个5V输出通道:一个为2A,另一个为3A。整个系统由STM32进行控制,并具备电池电压检测、过充保护、过温保护及充电状态指示灯功能。该方案已经通过打样验证(原理图文件格式为AD13)。
  • 图.SchDoc
    优质
    本资料为锂电池保护电路原理图,详细展示了电池保护板的关键组件和工作原理,适用于工程师学习与设计参考。 三节锂电池充放电保护电路原理图(AD文件格式),使用Ad21绘制,可以直接打开。
  • 优质
    本设计介绍一种用于锂电池的安全充放电保护电路,旨在防止过充、过放及短路等异常情况,确保电池性能和延长使用寿命。 ### 锂电池充放电保护电路的关键知识点 #### 一、引言与概述 富士通公司的MB39A134评估板是一种高度精确且高效的电池充电解决方案,该方案能够提供最高达2.85A的电流。它支持从2到4串锂离子电池的充电,并通过CELLS端口设置进行选择。内置交流适配器检测比较器独立于DC-DC转换器控制模块工作,可以自动选择供电路径并通过外部P沟道MOSFET实现。 #### 二、MB39A134 DC-DC转换器特性 MB39A134是一款专为锂离子电池充电设计的降压型DC-DC转换集成电路。它采用脉冲宽度调制(PWM)技术独立控制输出电压和电流,具有宽输入电压范围、低待机电流及高效率等优点,非常适合用作笔记本电脑等产品的内置充电设备。 #### 三、评估板规格参数 MB39A134评估板的主要规格包括: - 输入电压:在17.7V(最小值)到25V之间。 - 输出电压:根据电池数量设定,典型为17.3V。 - 最大输出电流:可达2.85A。 - 振荡频率:通常为300kHz。 - AC适配器检测电压:当输入电压从高变低时用于判断AC适配器的存在情况。如果输入电压低于特定阈值(例如17.7V),则认为没有接入交流电源。 #### 四、端口功能描述 MB39A134评估板上的主要端口包括: - **ACOFF**:控制是否切断交流电的信号输入。 - **CELLS**:用于选择2串、3串或4串电池充电模式。具体来说: - VCELLS悬空时,设置为2串; - VCELLS接地时,设置为3串; - VCELLS连接到VREF时,设定为4串。 - **CVM**:当比较器状态满足特定条件时输出低电平或高阻态信号的端口。 - **Vo**:DC-DC转换器向电池充电的输出。 #### 五、应用场景与优势 MB39A134评估板及其核心芯片MB39A134具有以下特点和应用: - 广泛的应用范围,适用于便携式电子设备如笔记本电脑和平板电脑。 - 内置交流适配器检测功能实现自动切换电源路径,无需额外硬件控制。 - 提供高达2.85A的充电电流,并具备高效转换效率,适合高性能移动设备使用。 - 支持从2串到4串锂离子电池的不同需求。 富士通MB39A134评估板及其核心芯片提供了一种灵活、精确且高效的锂电池充放电保护解决方案,适用于多种便携式电子设备。
  • TP4056充
    优质
    简介:TP4056是一款高效微功耗线性锂离子电池充电管理IC,专为单节锂电池设计,具备完善的保护功能,适用于各种便携式电子设备。 TP4056是一款专门用于锂电池充电保护的电路芯片。它能够有效地管理电池的充电过程,并提供过压、欠压及短路等多种保护功能,确保电池的安全使用。
  • 12V
    优质
    本资料提供12V锂电池保护板电路设计详细图解,涵盖关键元器件选型、焊接步骤及安全使用说明。适合电子爱好者和工程师参考学习。 12V锂电池保护板、16串磷酸铁锂电池保护板以及18650电池保护板在设计双面线路板时会优先考虑其工作原理。本段落将重点介绍单节电芯的锂电池保护板的工作原理,希望能帮助读者举一反三地理解其他类型的锂电池保护板。
  • 升压
    优质
    本项目专注于研发一种高效的锂电池供电升压及充电管理系统,旨在优化能源使用效率并延长电池寿命。通过先进的电压调节技术,确保设备在各种工作条件下均能稳定运行,并支持快速充电功能以缩短充电时间。该设计方案具有广泛的应用前景,在便携式电子产品、电动汽车等多个领域展现出巨大潜力。 最近我一直在开发一款基于锂电池供电的产品,并且对电源部分有以下要求:1、 使用单节可充电的3.7V锂电池作为电源;2、 板载自带充电管理模块,支持通过5V太阳能板或安卓手机充电器进行直接充电;3、 能够稳定输出5V电压以供相关电子设备使用;4、 需要提供稳定的3.8V电压,并且能够瞬间承载超过2A的电流来为4G通信模块供电;5、 稳定供应3.3V电压,用于MCU及其他需要此电压值工作的电路。 查阅资料后了解到,标称容量为3.7V的锂电池工作范围在2.8V至4.2V之间。因此,在没有额外电源管理的情况下直接使用这些电池无法稳定输出5V、3.8V和3.3V等所需的固定电压。为了满足上述需求,显然需要借助特定类型的电源转换芯片来实现。 对于获得稳定的5伏特电能而言,最明显的选择是采用升压型的电路设计;然而,针对3.8伏特与3.3伏特这两种较低但依然必要的输出电压值来说,则不能直接依赖锂电池通过低压差调节器(LDO)来进行转换。尽管理论上可行,但实际上会浪费电池的能量:因为无论是哪种类型的LDO都需要输入电压高于其设定的输出电平才能正常工作。例如,在尝试获取3.3伏特供电时,如果仅仅依靠原始电池能量,则当它的电量降至接近但略高于所需数值(即约等于或稍多于3.3V)的时候便无法继续提供稳定的电源供给了。 经过反复考量后得出结论:为了最大限度地利用锂电池的能量并确保所有电子元件均能获得所需的稳定电压,最合理的方式是采用“先升压再降压”的策略。具体来说就是首先使用合适的芯片将电池的电量提升至一个较高的水平(如5V),然后通过另一些特定类型的转换器进一步调整为所需的确切值(即3.8V和3.3V)。
  • STM32实现.rar_STM32__充器_充_
    优质
    本项目旨在设计并实现一款基于STM32微控制器的高效锂电池充电器。通过优化算法,确保充电过程安全、快速且可靠。 使用STM32实现锂电池充电器a3qw7e。
  • 系统代码
    优质
    本作品为锂电池专用的电池管理系统源代码,旨在通过智能算法优化电池性能、延长使用寿命,并确保使用安全。 电池管理系统锂电池源码提供了一套完整的软件解决方案,用于监控和管理锂离子电池的性能参数和技术指标。该系统能够有效地监测电池的状态,并确保其安全运行。