Advertisement

LED照明透镜的准直结构优化设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究致力于改善LED照明中透镜的准直效果,通过优化设计提高光线输出的一致性和能效,旨在开发出更加高效、节能且光照均匀的LED灯具。 基于非成像光学理论并结合LED光源特性,本段落针对车用照明准直光学镜头进行了优化研究。首先利用Zemax软件对简化后的LED准直照明结构模型进行设计与优化;随后使用SolidWorks三维建模软件创建了准直透镜的物理模型,并将其导入TracePro中进一步仿真分析和改进,使光能利用率提升了6%。根据上述研究成果制造出样品后,在测试系统上对比优化前后的光学性能表现:在5米距离处中心最大光照强度提高了约128%,而相同照度(即50 lx)条件下照射范围则增加了大约25%。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LED
    优质
    本研究致力于改善LED照明中透镜的准直效果,通过优化设计提高光线输出的一致性和能效,旨在开发出更加高效、节能且光照均匀的LED灯具。 基于非成像光学理论并结合LED光源特性,本段落针对车用照明准直光学镜头进行了优化研究。首先利用Zemax软件对简化后的LED准直照明结构模型进行设计与优化;随后使用SolidWorks三维建模软件创建了准直透镜的物理模型,并将其导入TracePro中进一步仿真分析和改进,使光能利用率提升了6%。根据上述研究成果制造出样品后,在测试系统上对比优化前后的光学性能表现:在5米距离处中心最大光照强度提高了约128%,而相同照度(即50 lx)条件下照射范围则增加了大约25%。
  • LED_TIR.rar_TIR_TIR_tir_
    优质
    本资源包提供关于TIR(全内反射)准直透镜的设计、应用和原理的相关信息。内容包括LED准直技术及TIR透镜的详细介绍。 编写LED准直透镜的程序代码,适合光学爱好者学习交流使用。
  • 矩形光斑LED均匀
    优质
    本文介绍了矩形光斑LED均匀照明透镜的设计方法与实现过程,探讨了优化光线分布和提高照明效率的技术细节。 为了提高LED矩形光斑透镜的能源利用率、光斑均匀性和表面平滑性,设计了一种能够实现均匀照明且光斑为矩形的新透镜。该设计基于双极坐标系对光线进行优化处理。
  • 基于双自由曲面LED均匀
    优质
    本研究提出了一种新型的LED照明解决方案,通过采用双自由曲面透镜实现了光线的高效均匀化和准直。该设计旨在提升LED灯具的光效和视觉舒适度,适用于室内及室外各种应用场景。 本段落提出了一种基于几何光学、能量守恒定律及菲涅耳定律的双自由曲面半导体发光二极管(LED)准直透镜的设计方法,并详细描述了构建这种准直透镜模型的算法设计过程。其中,自由曲面是指围绕中心轴旋转对称的一种特殊表面形式;其二维轮廓基于非均匀有理B样条曲线理论进行建模,使用ProE软件实现。 通过蒙特卡罗光线追踪模拟发现,与传统的单自由曲面准直透镜相比,双自由曲面设计显著提高了照度的均匀性和能量利用效率。研究结果表明,采用这种新的设计理念能极大扩展LED准直透镜的设计可能性,并且优化了其光学性能表现。
  • 基于LED光源TIR
    优质
    本研究致力于通过优化全内反射(TIR)透镜的设计,提升基于LED光源系统的光效、均匀度及照射距离等性能指标。 随着技术的进步以及环保需求的提升,LED光源由于其低能耗、长寿命的特点,在全球范围内得到了广泛应用。然而,尽管LED光源具备这些优势,它们在光能利用率方面仍然存在问题:朗伯型出射光分布导致了高发散性及较低照明效率。因此,全内反射(TIR)透镜作为一种能够优化LED光学性能的解决方案应运而生,并成为研究热点。 本段落将详细探讨如何通过改进设计来提高TIR透镜的效能,以实现LED光源更高效、小型化的应用目标。TIR透镜利用了光在特定条件下完全内反射原理,收集并引导光线,从而最大化照明效果。为了达到这一目的,在设计过程中首先需深入了解LED光源的光能分布特性,并准确追踪其光线路径。 传统二次光学设计通常采用复合抛物面聚光器(CPC)等结构来控制光束发散角,但这些方法在小型化设备中往往面临加工难度大和工作距离长的问题。相比之下,基于计算机辅助设计技术的自由曲面TIR透镜则具有明显优势:通过模拟光线路径并利用插值算法生成轮廓曲线,这种设计不仅能够灵活调整光线路径,还能避免传统光学设计中的许多问题。 在确定了离散点后,设计师将这些点连接成连续样条曲线,并旋转形成三维模型。这一过程允许对TIR透镜形状进行个性化定制以达到最佳效果。完成初步建模之后,则需利用Tracepro软件等工具进一步优化结构参数,确保光能利用率和发散角符合预期。 实验表明,经过优化的自由曲面TIR透镜在提高LED光源性能方面表现出色:其光能利用率可达95.26%,并且可以将光束发散角控制于±15°以内。这不仅保证了照明效果的一致性,还提升了系统的紧凑度和加工便利性。 综上所述,通过改进TIR透镜设计以提升LED光源性能具有重要意义,并且这种设计理念还可以应用于车用照明、指示灯以及精密仪器照明等多个领域中。随着技术的不断进步与优化方法的发展,在未来,全内反射(TIR)透镜有望进一步提高照明质量并推动能源节约及环保事业的进步。
  • LED系统自由曲面分析
    优质
    本研究聚焦于LED照明系统中自由曲面透镜的设计与性能优化,通过理论分析和实验验证,探索最佳光学结构以实现高效能光分布。 本段落通过设计基于LED光源的自由曲面透镜来实现均匀圆形光斑,并提出了一种快速建立光学器件模型的方法。该方法利用几何光学和非成像光学理论建立了透镜的数学方程,采用Matlab进行透镜表面数据的数值计算,并使用TracePro完成建模工作。通过动态数据交换(DDE)协议在Matlab与TracePro之间实现会话连接,在TracePro中自动创建透镜实体模型。 仿真结果显示,对于光通量为100 lm、光源尺寸为1 mm×1 mm且视角达到120°的LED朗伯型光源而言,在距其5米处的目标面能够形成半径约为3米的圆形光斑。该方法使得形成的光斑照度均匀性可达0.7,透镜效率则达到了87%。 与传统的实体模型设计方式相比,本研究提出的方法简化了设计流程并节省了大量的时间。此外,通过对比验证进一步证明了该方法的准确性和可靠性。
  • 利用Zemax
    优质
    本项目旨在运用Zemax软件进行光学系统的设计与分析,重点在于开发高效的准直透镜。通过精确计算和模拟,优化透镜参数以实现最佳光束准直效果。 这段文字介绍了如何使用Zemax设计一个准直镜头的教程。内容详尽且步骤清晰,是我从其他地方找到并觉得有用的资料,所以上传了。这是引用的内容,并非盗版。
  • LED自由曲面在道路均匀.pdf
    优质
    本文探讨了LED自由曲面透镜的设计方法及其在道路照明中实现光强分布均匀性的应用价值。通过优化透镜结构以提升路面照明效果和能效,为城市夜间交通安全提供支持。 ### 道路均匀照明的LED自由曲面透镜设计 #### 摘要与背景 随着LED技术的发展,因其具有长寿命、节能环保等特点,在道路照明领域的应用日益广泛,并逐渐替代传统的高压钠灯。然而,由于LED光源本身的发光特性较为特殊,如果不加以适当的光学设计,则直接照射在地面上的光线可能不均匀,从而影响道路照明的质量。因此,如何设计一种能够实现道路均匀照明的LED透镜成为了一个重要的研究课题。 #### 关键技术与方法 本段落提出了一种基于非成像光学原理的LED自由曲面透镜设计方案,旨在解决道路照明中光线分布不均的问题。具体的技术路径包括以下几个关键步骤: 1. **微分几何原理的应用**:利用微分几何原理建立自由曲面透镜形状的一阶拟线性双曲型偏微分方程。这一方程是描述透镜表面形状的关键数学工具。 2. **数值求解**:在MATLAB软件中对上述偏微分方程进行数值求解,得到透镜表面的具体数据。这是设计透镜的重要步骤之一,通过精确计算确保透镜能够实现所需的光学效果。 3. **三维建模与验证**:将数值求解得到的数据导入到SolidWorks中,构建出具体的透镜模型。这一步骤能够直观地展示透镜的设计成果,并为进一步的光学性能分析提供基础。 4. **光线追踪模拟**:使用TracePro软件对所设计的透镜进行光线追踪模拟,评估其实际照明效果。光线追踪是一种有效的物理模拟方法,可以帮助研究人员了解光线经过透镜后的分布情况。 5. **扩展光源配光验证**:进一步测试透镜在面对扩展光源时的照明效果,验证其是否能够在不同的光源条件下保持良好的照明均匀度。 6. **照明效果模拟**:利用DIALux软件模拟由这种透镜组成的路灯系统的整体照明效果,确保其能够满足国家道路照明标准的要求。 #### 主要研究成果 根据上述方法设计出的LED自由曲面透镜能够将LED光源的朗伯分布转化为适合道路照明所需的蝙蝠翼分布。在10米距离的目标面上,整体照明均匀度达到85%以上,能量利用率为89.2%。即使在处理扩展光源的情况下,光学系统依然能够保持良好的照明效果,有效照明区域内照度均匀度高于80%。通过DIALux模拟的5×10式模组路灯系统的照明效果显示,路面照度均匀度达到了0.83,完全符合国家标准。 #### 结论 本研究提出的方法有效地解决了道路照明中光线分布不均的问题,对于提高LED道路照明系统的整体性能具有重要意义。通过精确的数学建模与先进的光学仿真技术相结合,实现了道路照明的高效与均匀,展现了LED光源在道路照明领域中的巨大潜力。未来的研究可以进一步探索更多复杂的光源配置以及更广泛的照明应用场景,以满足不同环境下的照明需求。