Advertisement

MATLAB开发——高光谱图像解混与去噪

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目聚焦于利用MATLAB进行高光谱图像处理,重点研究和实现解混及去噪技术,旨在提升图像质量和分析精度。 Matlab开发:高光谱解混和去噪。演示高光谱混合噪声的解混过程。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB——
    优质
    本项目聚焦于利用MATLAB进行高光谱图像处理,重点研究和实现解混及去噪技术,旨在提升图像质量和分析精度。 Matlab开发:高光谱解混和去噪。演示高光谱混合噪声的解混过程。
  • 脉冲:本代码能降低中的脉冲声-MATLAB
    优质
    此MATLAB项目提供了一种有效方法用于去除高光谱图像中的脉冲噪声,通过创新算法显著提升图像质量与清晰度。 此代码展示了如何从高光谱图像中去除脉冲噪声,并解决了以下优化问题: min_X || YX||_1 + lambda ||Dh*X||_1 + lamdba ||Dv*X||_1 + mu ||X||_* 其中,X表示高光谱图像;Y代表压缩测量数据;而Dh、Dv是水平和垂直有限差分算子。这里的||X||_*则指矩阵 X 的核范数。 如何运行此代码: 只需执行 demoDenoising.m 文件即可查看其工作原理。在160x160x64大小的高光谱图像上展示输出结果大约需要耗时15秒左右。 文件说明如下: - demoDenoising.m :直接运行该脚本,了解代码是如何工作的; - funDenoising.m :这是采用split-Bregman技术来解决上述优化问题的主要函数。
  • Matlab代码-ICCCT-2019
    优质
    本资源提供了一套用于高光谱图像解混的MATLAB代码,适用于参与或研究于2019年ICCCT会议的相关学者和技术人员使用。 高光谱图像中的端元提取算法基于Spearman秩相关 高光谱解混(HU)是估计一幅图象内所有像素的纯光谱特征集及其合并比例的关键步骤,对于进行有效的高光谱分析、可视化及理解至关重要。由于高光谱数据固有的复杂性,从图像中准确地提取一组纯净签名作为端元具有很大的挑战性。近年来,人们尝试使用基于凸性的或正交投影的方法来解决这一问题。 本段落介绍了一种新的算法,该算法利用Spearman秩相关(SRC)探索了基于凸性的方法在高光谱端元提取中的应用。通过合成数据集和真实世界的数据集对该算法进行了评估。实验结果显示,在这些测试中所提出的算法有效减少了光谱角度误差(SAE)以及光谱信息发散度(SID)。此外,该算法提取的端元与地面实况(GT)端元高度相关。 这项研究展示了Spearman秩相关在高光谱数据处理中的应用潜力,并为解决这一领域的挑战提供了新的视角。
  • MATLAB代码-ET2ECN_2020:ET2ECN_2020
    优质
    ET2ECN_2020是基于MATLAB开发的一套用于处理高光谱图像的端元检测和丰度估计算法的开源代码,适用于遥感与环境监测等领域。 高光谱图像端元提取的MATLAB代码:基于凸几何与K均值算法 在高光谱数据处理领域,解混是一项关键任务,旨在从所有像素中近似纯类型的光谱特征及其组合比例。这一过程对于深入理解、研究和可视化高光谱图像至关重要。然而,在实际操作中提取这些纯净的光谱特征极具挑战性。 本段落提出了一种结合凸几何与K均值聚类技术的新方法来实现端元提取,相较于传统仅依赖于凸几何的方法,该算法提升了精度。文中详细比较了所提算法与其他先进算法在模拟数据集和真实世界数据集上的表现,并通过仿真结果展示了新方法的优势。 论文标题为《使用凸几何和K均值的高光谱端元提取算法》(作者:ShahD.、ZaveriT.、DixitR., 2020)。该研究作为GuptaS. 和 SarvaiyaJ. 编辑的“电子、通信与网络新兴技术趋势”一书的一部分,收录于《计算机和信息科学通讯》第1214卷中。
  • 基于全变分的算法-MATLAB实现
    优质
    本研究提出了一种基于光谱全变分理论的高光谱图像去噪方法,并在MATLAB中实现了该算法。通过优化光谱和空间信息,有效提升了去噪效果与图像质量。 该软件包提供了用于频谱总变化(STV)降噪算法的MATLAB代码,这是一种适用于高光谱图像的新降噪方法,能够从观测数据中估计整个频谱轴上的噪声水平。STV去噪算法的命令格式为:out_stv = 光谱电视(hyper_noisy, opts);其中 hyper_noisy 是输入图像,opts 是参数设置。输入图像是一个3D噪声图像(即高光谱图像或视频)。在使用该命令前,请将 opts.beta 设置为 [1 1 0.1]。输出结果会存储在变量 out_stv.f 中。更多详细信息请参考随附的用户指南。 有关更多信息和引用文献,可查阅: Chien-Sheng Liao、Joon Hee Choi、Delong Zhang、Stanley H. Chan 和 Ji-Xin Cheng,“通过总变异最小化对受激拉曼光谱图像进行降噪”,物理化学杂志 C,2015 年。
  • MNF.zip_MNF算法在Matlab中的应用_
    优质
    本资源介绍并实现了利用MNF(Minimum Noise Fraction)算法在Matlab平台下对高光谱图像进行降噪处理的方法,提供详细的代码和案例分析。 高光谱图像MNF算法用于实现高光谱图像的去噪,并且代码包含详尽的注释。
  • ATGP_;PCA元分源码.rar
    优质
    本资源包包含用于处理高光谱图像的代码和文档,重点介绍了基于PCA的高光谱数据降维及混合像元分解技术,适用于科研与教学。 高光谱图像;高光谱分解_PCA;混合像元分解;高光谱源码.rarrar
  • 素分
    优质
    高光谱图像的混合像素分解研究旨在通过精确解析和分离复杂地物混合信息,提高遥感图像分类精度与细节表现力。此技术对于环境监测、地质勘探等领域具有重要意义。 高光谱图像在遥感技术领域占据重要地位。通过混合像元分解可以得到该类图像的平均光谱特性曲线。本段落将详细讲解混合像元分解的过程,并使用ENVI软件进行相关处理与分析。 首先,我们需要理解什么是混合像元分解:这是一种从复杂的数据中提取纯净和混杂像素的技术手段,在高光谱图象中每个像素点包含多种物质的信息,而纯像素则是仅含有单一物质信息的像素。通过这一过程可以获取到图像中的平均光谱曲线。 端元提取是该流程的第一步,其目标是从图像数据集中分离出代表纯净成分的样本。基于PPI(Pixel Purity Index)的方法是一种常用的技术手段来实现这一点。 接着,在计算PPI时,需要对高光谱数据执行MNf 变换以减少维度,并运用特定算法确定每个像素点的纯度值。通过设定阈值范围,我们可以识别出那些较为纯净的目标区域和对应的样本。 n维可视化是该流程中的第二步。它涉及选择四个波段构建五维散点图来展示光谱信息,在这个过程中我们可以通过观察图形挑选端元,并剔除噪声影响的数据。 在确定了端元之后,下一步就是丰度解混过程,即通过计算每个像素的成分比例将其分解为纯净和混合像元。同时选择适当的算法参数进行分类操作以区分不同的物质类别。 总而言之,混合像元分解是高光谱图像处理的关键技术之一,它能够帮助我们更好地理解并应用这些复杂的数据集。
  • 数据集——Samon
    优质
    Samon是一款专为高光谱图像解混设计的数据集,包含多样化的地物光谱信息和复杂的混合像元场景,旨在促进机器学习算法在遥感领域的应用与发展。 高光谱图像解混数据集Samon提供了一系列用于研究的高光谱图像数据。该数据集旨在支持对复杂场景中的材料进行精确识别与分析的研究工作。
  • ATGP_;PCA在元分中的应用
    优质
    本研究探讨了主成分分析(PCA)技术在处理高光谱图像时的应用,特别聚焦于高光谱数据降维及混合像素分离的效能评估。通过实验验证,展示了PCA方法在提升图像解析度和目标识别精度方面的潜力。 本段落主要探讨了高光谱图像中混合像元分解的方法。