Advertisement

RF与微波功率检波器资料包(含原理图、PCB源文件、BOM清单及参考代码等)-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资料包提供全面的RF和微波功率检波器设计资源,包括详细的原理图、PCB源文件、物料清单以及实用参考代码,助力高效电路开发。 RF频率及微波功率检波器设计概述:此设计方案基于ADL6010 RF射频与微波功率检波器,能够将交流信号转换为与其输入幅度成比例的输出电压。该输出表现为线性电压,并且其斜率以V/V rms来量化。 在大多数功率计应用中,输出电压代表了输入信号的稳定直流值。ADL6010具备提取高达40 MHz带宽内RF信号包络的能力。 实物图显示:一款12位、采样率为1 MSPS的ADC(型号为 AD7091R)对检波器输出进行取样,采集的数据经由数据处理板传输至PC机上进一步分析。该ADC内部配置了2.5V基准电压源用于设定满量程电压;若需更高的满量程电压,则可通过外部参考电压来实现。 整个系统需要校准以确保准确性:由于其输出与输入波形频率相关,因此测量调制信号时还需额外应用一个修正因子。为此提供了一款带有简易图形界面的PC软件(CN-0366评估软件),用于执行必要的计算任务。 ADL6010检波器是一款45dB包络检波器,适用于从500 MHz到43.5 GHz的工作频段范围内使用。它的线性电压斜率大约为5.9 V/V rms,并且能够检测−30 dBm至+15 dBm或−43 dBV至+2 dBV(基于50欧姆系统)的绝对输入范围。 该检波器利用一个专有的八肖特基二极管阵列,结合创新性线性化电路来形成相对于输入均方根电压幅度的比例因子(传递增益),标称值为5.9。通过使用输出平均电容,ADL6010能够检测具有可变包络的信号;然而对于相同的输入功率水平,则需要一个校正系数以补偿因频率变化导致的输出电压差异。 公式说明了VOUT与均方根输入电压VRFIN之间的关系: \[ V_{\text{out}} = \text{slope} \times VRFin + Intercept \] 其中,Slope约等于5.9 V/V rms(在10 GHz时),Intercept则是当数据延长至Y轴的交点值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RFPCBBOM)-
    优质
    本资料包提供全面的RF和微波功率检波器设计资源,包括详细的原理图、PCB源文件、物料清单以及实用参考代码,助力高效电路开发。 RF频率及微波功率检波器设计概述:此设计方案基于ADL6010 RF射频与微波功率检波器,能够将交流信号转换为与其输入幅度成比例的输出电压。该输出表现为线性电压,并且其斜率以V/V rms来量化。 在大多数功率计应用中,输出电压代表了输入信号的稳定直流值。ADL6010具备提取高达40 MHz带宽内RF信号包络的能力。 实物图显示:一款12位、采样率为1 MSPS的ADC(型号为 AD7091R)对检波器输出进行取样,采集的数据经由数据处理板传输至PC机上进一步分析。该ADC内部配置了2.5V基准电压源用于设定满量程电压;若需更高的满量程电压,则可通过外部参考电压来实现。 整个系统需要校准以确保准确性:由于其输出与输入波形频率相关,因此测量调制信号时还需额外应用一个修正因子。为此提供了一款带有简易图形界面的PC软件(CN-0366评估软件),用于执行必要的计算任务。 ADL6010检波器是一款45dB包络检波器,适用于从500 MHz到43.5 GHz的工作频段范围内使用。它的线性电压斜率大约为5.9 V/V rms,并且能够检测−30 dBm至+15 dBm或−43 dBV至+2 dBV(基于50欧姆系统)的绝对输入范围。 该检波器利用一个专有的八肖特基二极管阵列,结合创新性线性化电路来形成相对于输入均方根电压幅度的比例因子(传递增益),标称值为5.9。通过使用输出平均电容,ADL6010能够检测具有可变包络的信号;然而对于相同的输入功率水平,则需要一个校正系数以补偿因频率变化导致的输出电压差异。 公式说明了VOUT与均方根输入电压VRFIN之间的关系: \[ V_{\text{out}} = \text{slope} \times VRFin + Intercept \] 其中,Slope约等于5.9 V/V rms(在10 GHz时),Intercept则是当数据延长至Y轴的交点值。
  • 比较PCBBOM-
    优质
    本资源提供了一种频率比较器电路的设计资料,包括详细的原理图、PCB设计文件以及物料清单(BOM),是电子工程师进行同类项目开发的理想参考。 频率比较器是一种电路设计用于从两个输入信号的频率对比中获取一个参考电压水平。该电路由两路输入组成:一路使电容器部分放电,另一路使其充电。这样,电容上的平均电量(即所需的参考电压)会根据这两个输入信号的频率变化。 在静止状态下,通过R3和R4组成的分压器将C1充至一半电压。当其中一个信号供给晶体管T1基极时,它依据输入频率进行开关操作。电路的主要作用是产生一系列与输入信号频率相关的脉冲来控制晶体管T2的开闭状态,从而让电容C1以第一路输入信号的频率放电。 如果两个输入频率相等,则充电和放电周期相同,导致通过C1的电压等于电源电压的一半。当一个输入频率高于另一个时,通过电容器C1的实际电压会偏离4.5V:若第一个输入频率较低,则该值大于4.5V;反之则低于此值。 为了测试电路性能,我们分别将K1端口连接至5kHz信号源、K2端口连接至2.5kHz信号源,并由9伏电源供电于K3。经测量发现,在这种情况下输出电压为3.7V(小于4.5V)。当调换输入频率后即第一个输入点改为较低的频率时,测得的输出电压上升到5.3V以上。
  • 12V 5A 开关详尽PCBBOM)-
    优质
    本资源提供全面详细的12V 5A开关电源设计方案,包括工作原理图、PCB布局和物料清单(BOM),适合电子工程师深入研究与应用。 电压/电流:11.6---12.6V / 5A 输出功率:≤60W 稳压精度:<±1% 负载效应:<±1% 源效应:<±0.3% 温度系数:<±0.1% 负载效应恢复时间:≤200uS 开机过冲幅度:<±10% 启动冲击电流:<150% 衡重杂音:<2mV 峰峰值杂音:<100mV 过压保护 短路保护
  • 子计步设计实现,PCBBOM-
    优质
    本项目提供一款全面的电子计步器设计方案,包括详尽的原理图、PCB布局文件、配套源代码以及物料清单(BOM),旨在为工程师和技术爱好者们打造一个完整的硬件开发参考。 基于ADI ADXL362的电子计步器系统设计概述如下:采用瑞萨RL78 CPU内核的MCU R7R0C002(48引脚,最高主频为24MHz),实现了具备完整功能的电子计步器。该设备包括按键设定功能,通过四个按钮可以对计步器进行各种设置;LCD显示功能则利用MCU内置的控制器和内部升压方式展示当前时间、步行数及卡路里消耗量等信息。 此外,系统能够根据3轴MEMS加速度传感器ADXL362检测到的数据计算出实际行走的步伐,并结合用户设定的体重与步长参数来估算每日的能量消耗。内存功能则将重要的数据如步行数量保存在具有掉电保护机制的内部闪存中,确保信息的安全性。 该设计还附带了详细的硬件电路图和PCB布局文件,以及完整的物料清单(BOM)和源代码。此外,文档内容还包括对软件与硬件设计方案的具体分析讲解。另一份相关的资料则是以ADXL362三轴加速度计为基础的小米智能手环的设计分享。 以上是基于ADI ADXL362的电子计步器设计的主要概述,它展示了如何通过集成先进的传感器和微控制器来创建一个高度精确且用户友好的健康监测设备。
  • 比赛作品:基于HLW8012的测量板设计(PCBBOM)-
    优质
    本项目提供了一种基于HLW8012芯片的高效功率测量解决方案,包括详细的原理图、PCB布局和相关代码。此外还包含了全面的物料清单(BOM),旨在为电子爱好者和工程师们在设计电力监控系统时提供便利与参考。 HLW8012功率测量电路的功能概述如下:该电路基于STM32F103C8T6芯片,通过输入捕捉接口读取HLW8012的功率数据,并将这些数据通过串口上传到PC界面进行显示。 视频演示展示了使用HLW8012实现的功率测量PCB电路板实物。此外,还提供了该电路板的原理图和PCB截图以及焊接好的实物图片展示。附件内容也包含相关资料。
  • USB开关PD控制设计(PCBBOM)-
    优质
    本项目提供了一种基于USB的电源控制解决方案,结合了智能电源开关和PD协议控制器的设计。包含详细的原理图、PCB布局文件以及物料清单,助力高效开发与应用。 USB电源开关及PD控制器电路功能概述: 该设计提供了一种基于TPS65982的参考方案,适用于USB Type-C 和电力输送(PD)应用中的电源管理。此设计方案能够实现多种功率分配模式以及交替模式(如DisplayPort),支持用户对现有的系统进行调试和开发。 所涉及的重要芯片包括:TPS54335A、TPS65982等。 TPS54335A芯片介绍: 该系列器件为同步转换器,工作电压范围在4.5V至28V之间。此系列产品集成了低侧开关场效应晶体管(FET),无需使用外部二极管,从而减少了组件数量。 特性USB PD 控制器包括: - 符合Type-C标准 - 拉电流和灌电流功率端口开关功能 - 过压及过流保护机制 - 数据端口多路复用能力 - USB低速端点支持
  • 【开】数控全套分享(PCBBOM)-
    优质
    本项目提供一套全面的数控电源设计资源,包括详细的原理图、PCB源文件、程序源代码及物料清单。适合工程师和电子爱好者深入学习与实践。 此数控电源开源套件仅供网友自学使用,请勿用于商业用途。设计原理:将传统模拟可调恒压恒流线性电源的环路通过单片机与运算放大器来实现控制功能。开机时,电源处于待机状态无输出;按下启动按钮后,预设值经单片机处理并通过运放发送至调整管以产生输出电压,并且稳压和恒流反馈信号会采集并送回单片机进行负反馈调节,以此确保稳定的工作效果。 在设计过程中遇到的挑战包括: 1. 使用如LM317或LT1085等可调稳压芯片时,对调整脚(ADJ)电压的要求较高。这要求运放输出-3V至20多伏特范围内的电压,常规运算放大器难以满足这一需求;此外,在过热情况下内部负反馈电路会限制外部MCU的控制效果。 2. 选择LM2576等降压型芯片时,其反馈脚FB具有固定阈值(例如1.23V),这在设计灵活性和输出电流调节上存在局限性,并且纹波较大。 3. 线性电源方案尽管电路复杂度较高、对模拟基础要求高,但因其灵活的设计思路被选为最终选项。 4. 开关电源与数控调压器结合的方式虽然全面覆盖了多种技术领域(如开关电源设计、单片机编程等),但由于纹波控制难度大且涉及范围广而未采用。 调试步骤包括: 1. 确保面板各路电源正常工作; 2. 测试程序下载接口以确保代码能正确加载至MCU中; 3. 调试液晶显示器,以便后续显示重要数据信息; 4. 单片机输出PWM波形测试; 5. 功率板调试与整机组装。 在进行电路调试图时建议避免使用电子负载,因其内部结构可能干扰电源纹波检测。推荐采用大功率可调电阻(例如500W)以减少误差并注意散热问题。此外,成功生成2路10位PWM信号是该数控电源的关键环节之一;所用单片机为STC最新系列芯片,并将汇编代码转译成易于理解的C语言形式。 在探索使用低端MCU模拟10位PWM时发现以下限制: - 最小占空比无法达到理想水平,导致输出电压起点高于预期; - 采用定时器生成低频PWM会导致较大纹波。
  • SW3518SW3518SPCBBOM完整).rar
    优质
    本资源提供SW3518及SW3518S方案包,内含PCB设计文件、电路原理图和物料清单(BOM)等全套技术文档,适用于相关硬件开发人员。 SW3518及SW3518S方案包含PCB、原理图和BOM等全套资料。
  • 3GHz手持频谱分析仪设计(PCBBOM)-
    优质
    本项目提供一款3GHz手持频谱分析仪的设计方案,涵盖详细的原理图、PCB布局文件、源代码和物料清单。适合电子工程师和技术爱好者深入研究与实践。 3GHz手持频谱分析仪特性介绍:这款手持设备的最大工作频率可达3GHz,并配备射频探测功能(最高至6GHz)及数据记录仪功能。无需连接外部PC或其他电脑,即可用于检测或调试无线系统并提供远程操作的有线串行接口。该仪器的人机界面采用液晶屏LCD显示菜单和手动控制键。 内部结构方面,3GHz手持频谱分析仪主要包括本振(LO)、混频器及中频(IF)系统。Si4012芯片用于生成960MHz频率信号以支持射频发射,并提供双线式接口进行控制;Maxim 2680负责实现混频功能;而通过Si4431在特定范围内完成IF系统的收发任务。 此外,设备使用ADL5519功率检波器来检测短波脉冲信号,无需设定具体频率。该器件可监测高达6GHz的频率,并以20kHz采样率工作。每隔十秒记录最大输出电平及当前检测频率至SD卡槽中保存数据变化情况;同时此接口也支持更新内部固件。 供电方面,3GHz手持频谱分析仪可以使用两节AA电池或镍氢充电电池运行,或者通过适配器连接到外部电源给镍氢电池充电。
  • 无线充500mA(PCBBOM
    优质
    本项目提供了一套完整的无线充电器电源管理解决方案,支持500mA电流。包含详细的设计文档如原理图、PCB源文件及物料清单(BOM),适用于电子工程师和爱好者深入研究与实践。 电源管理500mA无线充电器提供了一种高度集成的解决方案,能够实现无线充电并进行全面电池管理。该系统主要使用外部锂聚合物可充电电池进行储能。 设计框图展示了整个系统的架构,电路特点包括: - 集成了低成本现成线圈和板载无线接收器 - 支持1Ah至2Ah容量的外部锂离子或锂聚合物电池 - 低静态电流消耗为190µA - 可以通过3.3Vdc降压/升压电路为Launchpad供电,并通过5V升压电路支持其他辅助电路的工作需求 - 支持可叠加设计,便于构建完整的电源管理系统 实物展示包括了无线充电器的PCB 3D截图。