Advertisement

半导体制造技术。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该半导体工艺习题集及配套答案,旨在为专业知识的学习提供坚实的基础,并有效指导实际的工艺操作实践,从而巩固相关技能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 工艺
    优质
    简介:半导体制造工艺是将硅片加工成集成电路的关键技术流程,包括氧化、光刻、蚀刻、沉积等步骤,对现代电子产业具有重大影响。 半导体工艺习题与答案有助于专业知识的学习巩固,并指导实际工艺操作实践。
  • 工艺@第100章——平坦化详解
    优质
    本章节深入探讨了半导体制造中的关键步骤——平坦化技术,详细解析其原理、应用及最新发展,为读者提供全面理解这一工艺的基础。 在半导体制造过程中,平坦化技术是一项至关重要的工艺步骤,对于确保集成电路(IC)的高性能和可靠性起着决定性作用。本章将深入探讨平坦化技术的原理、方法及其在现代半导体制造中的应用。 我们首先需要理解为何需要进行平坦化处理。随着微电子技术的发展,多层布线结构中每一层电路制作都需要基于前一层的基础上完成。然而,特征尺寸不断缩小的过程中,如果晶圆表面不平整,后续光刻和蚀刻工艺将难以精确执行,可能导致连接错误或性能下降等问题。因此,平坦化的目的是消除不同层级之间的高度差异,并使整个晶圆的表面保持一致和平整状态。 目前常用的平坦化技术主要包括以下几种: 1. **化学机械抛光(CMP)**:这是最常用的技术之一。通过结合化学反应和物理摩擦作用去除多余的材料层,以实现均匀平整的目的。 2. **蚀刻回填法**:这种方法主要用于早期的半导体工艺中,通过对顶部高点进行局部或全局干湿式蚀刻再填充新材料来达到平坦化的效果。 3. **硬掩模平坦化**:在特殊情况下使用硬性保护层覆盖底层电路并执行特定操作以实现表面平整。 4. **有机物质蒸汽沉积(OPD)**:通过沉积一层有机材料然后进行处理,适用于浅沟道隔离等结构的制造过程中的平坦化需求。 5. **嵌入式金属绝缘体技术**:将金属线路埋藏于绝缘体内并控制其生长情况来实现表面平整。 每种方法都有各自的优点和局限性,并且适合不同的工艺阶段。例如,CMP在多层布线中表现出色但可能会产生边缘效应或表面缺陷等问题。因此,在实际应用时需要根据具体需求选择合适的平坦化技术方案。 随着半导体器件特征尺寸的不断减小以及向更高级别的制造挑战迈进(从微米级到纳米级甚至未来的原子尺度),对更加高效的平坦化策略的需求也越来越高,例如自组装分子层平铺或新型原子层沉积方法等可能会成为未来研究的重点方向之一。 总的来说,掌握并优化这些不同的平坦化技术对于确保半导体芯片的精度和可靠性至关重要。通过深入理解各种技术的应用场景及其优劣特性,工程师可以进一步提升制造流程的有效性和效率。
  • 工艺详解
    优质
    《半导体制造工艺详解》一书深入浅出地介绍了从硅片准备到封装测试的整个半导体生产流程,适合电子工程学生及行业从业者阅读。 本段落将详细讲解半导体工艺流程,内容丰富且具体,非常适合初学者学习。
  • 生产
    优质
    半导体生产技术是指用于制造半导体器件和集成电路的一系列工艺流程和技术方法,涵盖材料制备、晶圆加工、光刻、蚀刻等多个环节。 《半导体制造技术》一书详细回顾了半导体发展的历史,并融入了当今最新的技术资料。该书在学术界和工业界的评价都很高。全书共分20章,根据应用于半导体制造的主要技术分类来安排章节内容,包括与半导体制造相关的基础技术信息;总体流程图的工艺模型概况,通过流程图将硅片制造的主要领域连接起来;具体讲解每一个主要工艺;集成电路装配和封装的后部工艺概述。此外,各章还提供了关于质量测量和故障排除的问题,这些都是在实际硅片制造过程中会遇到的实际问题。
  • 激光器
    优质
    半导体激光器技术是指利用半导体材料制成的激光发射装置的技术,广泛应用于数据传输、医疗设备、打印等多个领域。 江剑平著的《半导体激光器》是一本比较经典的教学参考书,高清版内容丰富。
  • 硅片键合:MEMS工艺的成熟(英文).pdf
    优质
    本文介绍了半导体硅片键合技术在MEMS制造中的应用,探讨了其作为成熟工艺的技术优势及最新进展。 《半导体硅片键合:MEMS制造工序中的成熟技术》这篇文章详细探讨了微机电系统(MEMS)制造过程中的一项关键技术——半导体硅片键合。随着新型MEMS应用领域的快速发展,对现有制造技术提出了更高的要求,这推动了新的工艺研发以满足这些需求。 硅片键合是MEMS制造的核心步骤之一,涉及两个硅片的精确对接和粘合,这对于微小机械结构的创建至关重要。文章详细介绍了目前在MEMS制造中广泛应用的几种不同的晶圆键合方法,包括热压键合、电化学键合和分子层键合等,并分析了各自的主要工艺参数及优缺点。 热压键合是最常见的技术之一,通过高温下施加压力使硅片表面接触形成牢固连接。电化学键合利用金属间化合物的生成实现硅片结合,而分子层键合依赖于原子间的直接连结,对清洁度和表面粗糙度有极高要求。 文章进一步讨论了新型晶圆键合技术的发展趋势,这些新技术旨在适应MEMS制造中的特殊需求,如高精度、低热应力及兼容多种材料。新方法可能包括改进的预处理步骤、更精确的温度控制以及使用新的辅助材料以确保键合质量和可靠性。 在MEMS制造中,硅片键合不仅需要满足微小结构的制造要求,还需考虑器件封装和功能集成方面的需求。因此,该技术不仅要关注物理结合,还要考虑电气互连、密封性和热稳定性等方面的要求。此外,文章还强调了MEMS技术多学科特性的重要性,这涵盖了机械工程、电子工程及生物医学工程等多个领域,并突出了其在物理学、化学以及生物学基础方面的应用。 《半导体硅片键合:MEMS制造工序中的成熟技术》一文详细阐述了硅片键合在MEMS制造过程中的关键作用,探讨如何通过技术创新来应对日益增长的应用需求。从汽车工业到消费电子产品再到微流体系统,随着MEMS应用领域的不断扩展,硅片键合技术的发展将对这一领域产生深远影响。
  • 工艺详解(关于程的详细流程)
    优质
    本教程全面解析半导体制造工艺的每一个关键步骤,涵盖从硅片准备到芯片封装的整个过程,旨在为读者提供深入理解现代集成电路生产的知识。 半导体制造的详细工艺流程包括多个步骤: 1. 设计:首先根据需求设计芯片架构,并使用EDA(电子设计自动化)工具进行电路布局、布线以及仿真验证。 2. 制造晶圆:将纯度极高的硅原料通过拉制单晶体棒,然后切割成薄片——即为晶圆。在此阶段还需要对晶圆表面进行抛光处理以确保其平整光滑。 3. 氧化层生成与去除:在干净的基底上生长一层二氧化硅作为绝缘体,并根据需要选择性地移除部分氧化物形成栅极结构。 4. 光刻工艺:将设计好的电路图案转移到掩模版上,再利用紫外线透过该模板照射光阻剂覆盖的晶圆区域。曝光后经过显影、定影等步骤即可得到精确复制的设计图形。 5. 掺杂与扩散:通过离子注入或热处理的方式向硅片中引入特定种类和浓度的杂质原子(如磷、硼),从而改变局部电阻率,形成PN结和其他有源器件结构。 6. 金属化及互连:沉积一层或多层导电材料(通常是铝或者铜)用于连接不同层次之间的电路元件,并最终封装成品芯片。 以上就是半导体制造工艺的基本流程。每一步都要求极高的精度和清洁度以保证产品的性能与可靠性,整个过程复杂且耗时较长。
  • 光电子.pdf
    优质
    《光电子半导体技术》是一本深入探讨光电子学与半导体材料、器件及其应用领域的专业书籍。本书涵盖了从基础理论到最新研究成果的内容,为科研人员及工程师提供了宝贵的参考资源。 推荐一些关于半导体的基础书籍,希望大家会喜欢。这些书中包含了很多基础知识,对于从事半导体行业的人来说非常有用。
  • 电镀详解
    优质
    本教程深入浅出地解析了半导体制造中的关键步骤——电镀技术,涵盖原理、工艺流程及应用案例,旨在帮助读者掌握该领域的核心知识。 金镀层具有低接触电阻、优良的导电性和可焊性以及强大的耐腐蚀性能,在集成电路制造领域有着广泛的应用。例如:在驱动IC封装中普遍使用了电镀金凸块;CMOS/MEMS技术应用电镀金来制作开关触点和各种结构等;雷达上也采用了金镀层作为气桥材料;此外,还用于UBM阻挡层的保护以及引线键合面。 1. 电镀金工艺 1.1 工艺流程 集成电路中的金电镀具体步骤如下: ①在硅片表面溅射钛、钛钨等金属以形成黏附层,并在其上再沉积一层极薄的黄金作为后续电镀的基础; ②涂覆光刻胶,通过曝光和显影工艺来定义出所需的电镀图形; ③清洗处理后进行实际的金电镀操作; ④去除表面的光刻胶材料; ⑤蚀除未被需要图案覆盖住的部分导电层; ⑥最后对产品进行退火处理。