Advertisement

极紫外光刻机光源技术研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《极紫外光刻机光源技术研究》一文深入探讨了用于先进半导体制造中的极紫外(EUV)光刻技术的关键光源问题,分析当前EUV光源的技术挑战与解决方案,并展望未来的发展趋势。 极紫外光刻机光源技术是一种先进的制造工艺,用于半导体器件的生产。这种技术利用波长在13.5纳米左右的极紫外光作为曝光源,在晶圆上绘制出精细电路图案,从而实现更小、更快的芯片制造。这项技术是当前集成电路领域的一个重要突破,对于推动整个行业的进步具有重要意义。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《极紫外光刻机光源技术研究》一文深入探讨了用于先进半导体制造中的极紫外(EUV)光刻技术的关键光源问题,分析当前EUV光源的技术挑战与解决方案,并展望未来的发展趋势。 极紫外光刻机光源技术是一种先进的制造工艺,用于半导体器件的生产。这种技术利用波长在13.5纳米左右的极紫外光作为曝光源,在晶圆上绘制出精细电路图案,从而实现更小、更快的芯片制造。这项技术是当前集成电路领域的一个重要突破,对于推动整个行业的进步具有重要意义。
  • 投影镜头设计
    优质
    《极紫外投影光刻镜头设计》一文聚焦于探讨先进的极紫外(EUV)技术在微电子制造中的应用,详细介绍了EUV投影光刻镜头的设计原理、技术挑战及解决方案。 极紫外投影光刻技术利用14纳米波长的电磁辐射,在实现高分辨率的同时保持较大的焦深范围,有望成为制造超大规模集成电路下一代的关键光刻技术。该技术采用步进扫描方式,并使用全反射、无遮挡且缩小的环形视场投影系统。设计此类系统的初始结构具有挑战性但至关重要。 文中介绍了一种近轴搜索方法来确定这种无遮挡投影系统的初始参数,包括像方远心、物方准远心、固定放大率以及Petzval条件和物像共轭关系等约束条件下,通过计算得出第一面反射镜、最后一面反射镜及光阑所在反射镜的曲率,并且明确了物距与像距。利用这种方法编写了搜索程序以获取初始结构。 基于此方法设计出了两种不同配置的光学系统: - 第一种由四个反射镜组成,数值孔径为0.1,像方视场尺寸为26毫米×1毫米,畸变控制在10纳米以内,并且分辨率能达到优于每毫米6000个周期。 - 另一套则包含六个反射镜,在相同的视野条件下,提高了数值孔径至0.25,同时将畸变降低到3纳米以下,使得其分辨能力达到每毫米超过18,000个周期。
  • 线使用手册
    优质
    《紫外线光刻机使用手册》是一份详尽的操作指南,旨在帮助用户掌握UV光刻技术的各项要点。从设备安装、调试到实际操作和维护保养,本书提供了全面而实用的信息,是从事微纳加工的科研人员及工程师不可或缺的手册。 感谢您选购我们的紫外光刻机设备,请在使用前仔细阅读本说明书。
  • 物镜的组合倍率梯度膜设计
    优质
    本研究聚焦于极紫外光刻技术中物镜的设计优化,特别探讨了通过创新的组合倍率与梯度膜技术来改善光学性能的方法。 随着10纳米以下光刻技术的发展,极紫外(EUV)光刻物镜正朝着超高数值孔径(NA)和组合倍率设计的方向进化。这导致了入射角及范围的显著增加,传统的规整膜和横向梯度膜已经无法满足这类系统的反射率与成像质量需求。 为解决这一问题,我们提出了一种横纵梯度膜结合的方法:利用横向梯度膜来提升反射率,并通过纵向梯度膜优化反射均匀性同时补偿由横向梯度膜引入的像差。我们将这种方法应用于一套数值孔径(NA)为0.50的组合倍率EUV光刻物镜的设计中,结果显示,在保持系统成像性能不变的前提下,每面反射镜平均反射率超过60%,且所有镜子的最大和最小反射值差异均低于3.5%。这表明该方法满足了光刻技术的要求,并验证了横纵梯度膜结合法的有效性。
  • 关于深薄膜材料的学常数的
    优质
    本研究探讨了深紫外及紫外波段薄膜材料的光学性质,旨在通过精确测量与计算获得其光学常数,为高性能光电子器件的设计提供理论支持。 为了进一步明确氟化薄膜材料在深紫外至紫外波段(DUV-UV)的光学常数,本段落研究了六种常用的大带隙氟化物薄膜材料,并分别在熔石英(JGS1)基底和氟化镁单晶基底上通过热舟蒸发法镀制了三种高折射率材料薄膜:LaF3、NdF3、GdF3以及三种低折射率材料薄膜:MgF2、AlF3、Na3AlF6。使用商用Lambda900光谱仪测量了这些薄膜在190~500 nm范围内的透射率曲线;通过包络法和迭代算法结合,研究了它们的折射率与消光系数,并利用柯西色散公式及指数色散公式对得到的数据进行最小二乘拟合。最后得到了六种材料在此波段内的折射率和消光系数的色散方程及其相应的色散曲线。实验结果与已发表文献中的MgF2和LaF3的结果一致,证明了本段落研究结论的可靠性。
  • 讲解.ppt
    优质
    本PPT详细介绍了半导体制造过程中的关键步骤——光刻和刻蚀技术。通过图文并茂的方式解析了这两项技术的基本原理、工艺流程及其重要性,旨在帮助读者理解其在集成电路生产中的应用价值。 “光刻”是指在涂有光刻胶的晶圆上覆盖事先准备好的光刻板,并用紫外线透过该板对晶圆进行照射。其原理是利用紫外线使部分光刻胶发生化学变化,从而便于后续腐蚀处理。 接下来,“刻蚀”步骤会在完成曝光后使用特定的腐蚀液去除经紫外线处理变质的部分光刻胶(正性光刻胶),进而使得晶圆表面显现半导体器件及其连接线路的设计图案。随后采用另一种腐蚀液对晶圆进行加工,最终形成所需的半导体器件和电路结构。
  • 逆向系统
    优质
    逆向光刻技术系统是一种先进的微纳加工技术,通过该系统可以实现高精度、高分辨率的芯片制造和复杂纳米结构的设计与构建。 反向光刻系统在半导体制造领域扮演着关键技术的角色,并推动了微电子及纳米技术的发展。芯片制造过程中,光刻系统的作用至关重要,它负责将电路图案精准转移到硅片上。传统的正向光刻系统曾是行业标准,但随着集成电路尺寸的不断缩小,反向光刻系统的独特优势使其成为提高分辨率和精度的关键技术。 反向光刻系统的构建基于两个核心要素:部分相干光源技术和分层光刻胶模型。在光刻机中使用部分相干光源可以解决传统正向光刻系统中的分辨率限制问题。由于这种光源的相干长度有限,其各个部分之间的相位关系并不完全一致,在传播过程中能够减少光学干涉导致的图案变形问题,从而提高成像质量并实现更为精细和复杂的电路图案转移。 分层光刻胶模型则是另一项创新技术。作为一种对特定波长光线敏感的材料,光刻胶在光照作用下可以形成所需的图案。通过逐层叠加不同性质的光刻胶,每层都针对不同波长的光具有独特的响应特性。这种多层结构不仅增加了三维复杂度,并且能够更精确地控制曝光和显影过程中的反应条件,从而实现更高精度的电路图形转移。 在反向光刻技术的研究中,掩膜最优化是至关重要的环节。作为光刻过程中模板的一部分,掩膜上的图案通过光照转移到光刻胶上。这一过程不仅涉及设计优化、材料选择及制造工艺改进等多个方面,并且对于降低缺陷率、提高对准精度和一致性具有重要意义。 文件名straitified medium_inverse可能指的是在反向光刻系统中采用的分层介质或分层光刻胶模型的研究与分析,其中包括了不同介质间光线传播特性的模拟。通过研究这些多层结构中的光学规律,可以进一步优化光刻工艺并提升最终产品的质量和性能。 总而言之,反向光刻技术是一项集成了光学、材料科学及计算模拟等领域的复杂科技手段,在不断推动半导体制造技术极限的同时促进了微电子设备向着更小、更快和更高效率的方向发展。随着新技术的持续创新与深入研究,反向光刻系统已成为集成电路领域内的主要驱动力,并为未来科技进步奠定了坚实基础。
  • 微电子详解
    优质
    《微电子光刻技术详解》是一部全面解析半导体制造中关键步骤——光刻工艺的专业书籍。书中深入浅出地介绍了从紫外光刻到先进的极紫外(EUV)光刻等各类技术,帮助读者理解微纳器件制备的复杂过程和最新进展。 超大规模集成电路工艺技术中的光刻技术涵盖了该领域的各个方面的问题。
  • 行业框架分析10.pdf
    优质
    本PDF深入探讨了光刻机行业的研究框架,涵盖了技术发展、市场趋势、竞争格局和未来前景等多方面内容。适合产业内专业人士阅读参考。 光刻机是前道工艺设备中的核心装备之一,在制造设备的投资额中占比高达23%,技术复杂度极高,涉及精密光学、运动控制及环境管理等多项先进技术。它被视为半导体工业皇冠上的明珠。 在当前全球市场环境下,ASML、尼康和佳能完全垄断了光刻机的供应,占据99%以上的市场份额。因此,在战略层面上推动国产替代显得尤为重要。根据国家02专项计划的目标,预计到2020年底将完成193纳米ArF浸没式DUV光刻机的研发,并实现其在28纳米制程工艺上的应用。鉴于此项目作为“十三五”规划的一部分,未来发展前景明确且具有重大意义。 随着国产替代战略的推进和关键技术节点的进步,我们有理由相信,在IC前道制造领域将有望初步打破国外巨头垄断的局面,从而迈出从无到有的重要一步。 对于即将交付的28纳米光刻机项目而言,建议重点关注那些致力于实现国产化目标的企业与技术环节。具体来说: 1. **核心组件**:上海微电子负责整机集成、科益虹源提供光源系统、国望光学设计物镜模块、国科精密开发曝光光学部分以及华卓精科和启尔机电分别承担双工作台及浸没系统的研发。 2. **配套设备与材料**:光刻胶,气体,掩模版,缺陷检测仪等也是实现国产化进程中不可或缺的环节。