本项目采用C++语言编写,旨在高效解决各类线性方程组问题。通过多种算法实现精确且快速的计算,适用于学术研究与工程应用。
以下是使用C/C++语言实现的函数描述:
1. `bool lu(double* a, int* pivot, int n)`:此函数用于对n×n矩阵a进行LU分解,并采用高斯列选主元消去法在内存中按行优先次序存放。参数pivot是输出参数,它将包含0到n-1的范围内的所有主元位置排列。如果函数执行成功,则返回false;否则,返回true。
2. `bool guass(double const* lu, int const* p, double* b, int n)`:此函数用于求解线性代数方程组Ax=b中的x值,其中矩阵LUnxn是某个n×n的矩阵a的LU分解结果,并且在内存中按行优先次序存放。参数p[0,n)表示LU分解过程中的主元排列情况;b则是给定方程右边向量。此函数计算出解并将其存储于数组b[0,n)中,如果成功则返回false;否则,返回true。
3. `void qr(double* a, double* d, int n)`:执行矩阵的QR分解操作。假设n×n的矩阵a在内存中的排列方式为行优先次序。此函数使用Householder变换方法实现就地进行QR分解,并将结果存放在d数组中,该数组包含上三角对角线元素。
4. `bool householder(double const* qr, double const* d, double* b, int n)`:用于求解线性代数方程组Ax=b中的x值。这里qrnxn是某个矩阵a的QR分解结果,并且在内存中按行优先次序存储;d[0,n)表示上三角对角元素,b为右边向量。此函数计算出给定方程组的解并将结果存放在数组b[0,n)中。如果成功,则返回false;否则,返回true。