Advertisement

线性3D有限元求解器 - MATLAB开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
这是一个用于解决线性静力学问题的三维有限元分析工具箱,基于MATLAB环境开发。用户可以导入模型、定义材料属性和边界条件,并进行结构响应分析。 三维问题的线性有限元求解器。示例文件“Example.m”用于分析受集中力作用的梁。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线3D - MATLAB
    优质
    这是一个用于解决线性静力学问题的三维有限元分析工具箱,基于MATLAB环境开发。用户可以导入模型、定义材料属性和边界条件,并进行结构响应分析。 三维问题的线性有限元求解器。示例文件“Example.m”用于分析受集中力作用的梁。
  • 线
    优质
    《非线性有限元解析》一书深入探讨了非线性问题的解决方法和技巧,特别聚焦于材料、几何及接触等多方面的非线性现象。通过详实的理论分析与实际案例结合,为工程结构设计与分析提供了强有力的工具和技术支持。 非线性有限元分析是张汝清的经典著作。
  • MATLAB线资源
    优质
    MATLAB非线性有限元资源提供基于MATLAB的非线性问题求解工具和教程,涵盖结构分析、材料建模等领域,适合科研人员及工程师学习使用。 非线性有限元分析是一种广泛应用于工程计算中的数值方法,用于解决那些无法通过解析方法求解的复杂问题。MATLAB作为一种强大的数学软件,提供了丰富的工具和函数库来支持这类复杂的计算。 在进行非线性有限元分析时,以下几点是关键的知识点: 1. **非线性方程组**:物理现象中的非线性关系导致了需要解决的方程不再是简单的线性形式。这包括几何变形、材料特性变化和接触问题等引起的复杂情况。 2. **几何非线性**:当结构发生显著形变时,必须考虑这种变形对力和应力的影响。例如,在处理大挠度或大位移的问题中就需要特别注意这一点。 3. **材料非线性**:对于那些不遵循胡克定律的材料(如弹塑性和超弹性材料),需要精确地描述它们在有限元模型中的行为。 4. **接触非线性**:工程实践中,组件之间的相互作用可能包括滑动、摩擦或碰撞等复杂情况。正确处理这些接触问题对准确建模至关重要。 5. **MATLAB编程基础**:了解基本的MATLAB语法和数据结构是使用该软件进行有限元分析的基础。 6. **MATLAB工具箱**:如`pde toolbox` 和 `femtoolbox` 等,提供了用于处理非线性问题所需的各种功能。 7. **迭代求解器**:由于复杂的方程组通常没有直接的解析解法,因此需要使用像牛顿-拉弗森这样的迭代算法来寻找近似解决方案。 8. **边界条件和载荷施加**:正确设定这些参数是确保模型准确性的关键步骤。 9. **结果后处理**:求解完成后,可以通过MATLAB中的各种函数(如`plot`, `surf`)来进行可视化分析,并展示应力、应变和位移等信息。 10. **误差分析与收敛性**:在迭代过程中检查解决方案的精度并调整相关参数以优化计算过程。 这个压缩包中包含了一系列用于学习非线性有限元方法的MATLAB代码,旨在帮助用户通过实际案例来理解这些概念。对于初学者而言这是一个很好的资源;而对有经验的人来说,则可以提供新的视角和解决问题的方法。
  • 线边界值问题的差分法-MATLAB
    优质
    本项目利用MATLAB编程实现非线性边界值问题的数值求解,采用有限差分方法进行离散化处理,并通过迭代算法得到精确度较高的近似解。 函数非线性BVP_FDM .m 是用于解决一般非线性的边值问题的有限差分法程序。该方法适用于求解形式为 y = f(x, y, y) 的微分方程,其中 a < x < b,并且给定边界条件为 y(a) = alpha 和 y(b) = beta。 区间 [a,b] 被划分为 (N+1) 个等间距的子区间。每个子区间的端点位于 x(i)=a+i*h 处,i 的取值范围是 0 到 N+1。 函数 f 应该定义为一个 m 文件,并且不需要提供 f 的偏导数信息,这在给出的例子中可以得到体现。例如求解非线性边值问题 y = (1/8) * ...
  • 基于MATLAB的几何非线分析及非线方程
    优质
    本研究利用MATLAB软件进行复杂结构的几何非线性有限元分析,并提出一种高效算法用于解决伴随产生的非线性方程,以提高工程设计中的精确性和效率。 有限元分析中的几何非线性和大变形问题。
  • Calculex简介
    优质
    Calculex是一款先进的有限元分析软件求解器,专为解决复杂工程结构问题设计。它能够高效准确地计算应力、变形及振动特性等,帮助工程师优化设计方案并确保产品安全可靠。 本段落介绍了Calculix有限元的基本情况、文件接口形式及其含义,并展示了求解效果。
  • 2D 弹 Q4 :利用 Q4 单决二维平面应力下线静态弹问题的 FEM 代码 - MATLAB
    优质
    本项目提供一个用于求解二维平面应力条件下线性静态弹性问题的MATLAB有限元分析(FEA)工具,采用Q4四节点矩形单元。 我们开发了一个用于有限元分析的计算机程序,该程序使用每个单元具有4个节点的等参单元来求解二维平面应力下的线性静态弹性问题。载荷仅限于2D点力作用,边界条件则限定为应用于节点上的均匀位移约束。此程序主要专注于任何现代有限元软件包中的“求解器”部分,并且可以根据需要开发一些预处理和后处理实用工具以支持基本网格生成或展示产生的应力、应变及位移场等信息。所有输入数据与物理计算均采用公制单位进行,除非另有说明,默认显示的结果也使用相同的公制单位:位置和位移为米(m),力为牛顿(N),压力、应力以及杨氏模量则以帕斯卡(Pa)表示。
  • MATLAB——非线差分法
    优质
    本项目采用MATLAB编程实现非线性问题的数值求解,通过有限差分法模拟复杂系统的动态行为,适用于科学计算和工程应用。 使用MATLAB开发非线性有限差分法来求解非线性边值问题。
  • 线方法
    优质
    《非线性有限元方法》是一本专注于工程结构分析中复杂问题求解的专业书籍,深入讲解了非线性有限元理论与应用技术。 这是一本关于非线性有限元方法的电子书,提供高清版本,并且是最新、经典的英文著作。
  • GPU 3D 线插值 - MATLAB
    优质
    本项目为MATLAB开发环境下的GPU加速3D线性插值工具,旨在高效处理大规模数据集的三维空间插值问题,提供快速准确的数据分析与可视化解决方案。 对于 CPU 而言,此函数比 MATLAB 的 griddedInterpolant 函数更快,但速度不及在 GPU 上使用 interpn 函数快。我已经利用 arrayfun 对其进行了编码处理。由于 MATLAB 不支持在 arrayfun 中直接应用 interpn 功能,因此该函数可能对那些希望将更复杂的代码部署到 GPU 并需要进行插值操作的人来说有所帮助。 我努力使这段代码尽可能高效运行,但仍然无法达到与 interpn 相同的速度水平。如果您有任何改进建议,请不吝赐教。此外需要注意的是,此函数假定用于插值的数据不会超出网格范围,并且在每个维度上的间隔是均匀的。其语法形式完全符合 MATLAB 的 interpn 函数:Vi=interpn(x1,x2,x3,V,x1i,x2i,x3i); Vi=interp3gpu(x1, x2, x3, V, x1i, x2i, x3i) 应该会得到相同的结果。如果您的数据是 gpuArrays,那么 int 将自动在 GPU 上执行运算。