Advertisement

包含FIFO的Verilog UART模块(单个.v文件)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本设计提供了一个简洁高效的UART模块Verilog代码,采用FIFO实现数据缓冲,支持异步通信,适用于串行通信接口开发。 参考黑金的串口收发方法,在一个.v文件中实现串口收发和FIFO的功能。操作接口主要使用FIFO:当rx_fifo_empty不等于1时,表示接收到数据,可以从FIFO读取;发送串口只需将数据存入FIFO即可。接收过程中需要判断起始位为低电平以及停止位为高电平,以防止上电前由于外部存在持续的数据传输而导致的误码问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • FIFOVerilog UART.v
    优质
    本设计提供了一个简洁高效的UART模块Verilog代码,采用FIFO实现数据缓冲,支持异步通信,适用于串行通信接口开发。 参考黑金的串口收发方法,在一个.v文件中实现串口收发和FIFO的功能。操作接口主要使用FIFO:当rx_fifo_empty不等于1时,表示接收到数据,可以从FIFO读取;发送串口只需将数据存入FIFO即可。接收过程中需要判断起始位为低电平以及停止位为高电平,以防止上电前由于外部存在持续的数据传输而导致的误码问题。
  • 基于VerilogFIFO功能UART
    优质
    本设计采用Verilog语言实现了一个集成FIFO缓存功能的UART模块,适用于高速数据传输场景,有效提高了通信效率和稳定性。 这段文字描述了一个用Verilog实现的UART模块,该模块包含FIFO功能,并且代码风格良好、结构模块化,具有较高的参考价值。
  • Verilog UART
    优质
    本模块基于Verilog语言设计,实现UART通信协议的功能。适用于FPGA和ASIC项目中的串行数据传输需求,提供灵活的配置选项以适应不同应用场景。 使用Verilog编写UART模块时,可以在例化该模块的过程中配置其工作频率与时钟波特率,并且内部集成了晶振与波特率计数器偏差校正功能(通过最小边沿进行校正),能够修正-10%到+10%范围内的误差。接收部分采用7点采样技术以提高信号的准确性。 以下是UART模块的一个实例化示例: ```verilog uart #(.freq_clk(24), .freq_baud(57600)) m1( .clk(clk_24mhz), .reset_n(reset_n), .tx(uart_tx1), .rx(uart_rx1), .data_to_tx_flag(tx_flag), .data_to_tx(tx_data), // 忽略未使用的输出端口 .busy(), .send_ok(tx_send_ok), .data_from_rx_flag(rx_flag), .data_from_rx(rx_data) ); ``` 在上述代码中,`freq_clk(24)`代表模块的时钟频率为24MHz;而`freq_baud(57600)`则指定了波特率为57.6Kbps。另外,输入输出信号包括了复位信号、接收和发送引脚以及数据传输标志等均被正确地连接到了相应的端口上。
  • Verilog源代码IIC UART USB JTAG DMA).rar
    优质
    本资源包含多种通信和控制接口的Verilog实现代码,包括I2C、UART、USB、JTAG及DMA模块,适用于FPGA或ASIC设计。 在电子设计领域,Verilog是一种广泛使用的硬件描述语言(HDL),用于设计和验证数字电路。一个名为“模块iic uart usb jtag dma的 verilog 源代码.rar”的压缩包包含了关键接口和通信协议的一些实现源码。接下来我们将逐一探讨这些模块及其相关知识点。 1. **IIC (Inter-Integrated Circuit)**:这是一种串行通信协议,通常用于微控制器与外部设备之间的近距离通讯。该协议由两个主设备及多个从设备构成,并使用两根数据线SCL(时钟)和SDA(数据)。在Verilog中实现IIC模块需要考虑起始/停止条件、数据传输、应答机制以及仲裁规则等,通常会设计状态机来管理整个通信过程。 2. **UART (Universal Asynchronous ReceiverTransmitter)**:这是一种异步串行接口,用于设备之间的单向或双向通讯。它一般包括三根线:TX(发送)、RX(接收)和GND(地)。在Verilog中实现该模块涉及设置波特率、帧格式以及错误检测机制等问题,并且同样需要设计状态机来控制数据的收发过程。 3. **USB (Universal Serial Bus)**:这是一种通用接口,用于计算机与其它设备之间的连接并提供高速的数据传输。由于不同版本(如2.0和3.0)的存在及定义明确的不同类型的设备类别,实现该协议相对复杂。在Verilog中构建USB模块需要理解其各个层级的协议细节,并设计状态机处理各种数据类型。 4. **JTAG (Joint Test Action Group)**:这是用于硬件调试与测试的一种标准边界扫描技术。它通常使用四根线TCK(时钟)、TDI(输入),TDO(输出)和TMS(模式选择)。在Verilog中实现的JTAG模块将包含一个TAP控制器,允许通过边界扫描链进行故障检测及配置。 5. **DMA (Direct Memory Access)**:这种技术使外部设备可以直接访问系统内存而无需CPU介入,从而提高数据传输效率。在Verilog中构建的DMA控制器负责管理数据传输请求,并与总线接口交互来控制内存和外设之间数据流动的过程。 6. **TimerWatchdogPWM**:这三个组件是嵌入式系统中的常见模块。计时器用于定时功能;看门狗定时器为系统的正常运行提供安全保障,当程序出现异常情况可以重新启动系统;而脉宽调制(PWM)则用来生成具有可变占空比的数字信号,通常应用于模拟信号输出或电机控制。 以上每个模块在Verilog中的实现都需要深入了解相关协议,并准确地用硬件描述语言来描绘其逻辑行为。这些源码不仅能作为学习Verilog和数字系统设计的重要资源,还能够直接应用到实际FPGA或ASIC的设计中去。
  • AD7606 VVerilog代码
    优质
    这段Verilog代码是为AD7606 V模块设计的,旨在实现其模拟到数字转换功能,并优化了信号处理效率和精度。适用于需要高分辨率数据采集系统的应用。 FPGA AD7606 300K 8路采集,使用AXI传输数据。
  • 基于VerilogUARTFIFO 32位设计
    优质
    本项目采用Verilog语言设计了一种带有FIFO缓存功能的32位UART模块,适用于高速数据传输场景。 用Verilog语言设计UART并带32位FIFO的功能可以参考相关资料进行实现。
  • UART通信Verilog代码.zip
    优质
    该资源包含了用于实现UART(通用异步收发传输器)通信功能的Verilog代码。文件内详细描述了UART协议的硬件实现方法,适用于FPGA或ASIC设计项目中数据传输部分的设计与仿真。 UART通信模块的Verilog代码可以用于实现串行数据传输功能。在设计该模块时,通常需要定义信号如接收数据、发送数据以及相关的控制信号,并且要确保波特率生成器能够正确地同步数据流。此外,还需要考虑错误检测和纠正机制以提高通信可靠性。 为了优化性能,可以在硬件描述语言中实现流水线技术来减少延迟并增加吞吐量;同时也可以通过添加寄存器级设计来改善时序特性。最后,在完成代码编写之后应当进行详细的仿真测试确保其功能正确无误。
  • 基于VerilogUART发送设计
    优质
    本项目详细介绍了一个基于Verilog语言实现的UART发送模块的设计与仿真过程,适用于数字系统通信接口的学习和应用开发。 UART(通用异步收发传输器)是一种用于计算机系统与外部设备之间进行串行数据传输的协议。它定义了数据传输格式及通信规则,确保不同设备间能够可靠地交换数据。 在代码实现中采用三段式状态机: IDLE:空闲状态,在此状态下没有数据传输,并输出高电平;当接收到i_valid信号时,跳转至START状态; START:起始位阶段,无实际的数据传输发生,此时输出低电平并直接进入DATA状态; DATA:数据位阶段,进行数据的实际发送工作。首先发送最低有效位(LSB),随后根据具体数据内容决定是高电平还是低电平输出。若使用奇偶校验,则从该状态跳转至CHECK状态;反之则直接跳转到STOP状态。 CHECK:用于处理奇偶校验位的状态,依据设定的CHECK_BIT参数添加相应的校验值后进入下一个阶段; STOP:停止位阶段,在此状态下持续输出指定数量(由STOP_BIT决定)的高电平信号。
  • Verilog编写UART串口代码
    优质
    这段代码是用Verilog语言编写的一个UART(通用异步收发传输器)串口通信模块。它实现了数据的发送与接收功能,适用于FPGA或ASIC设计中的嵌入式系统开发。 UART串口模块是数字系统中的常见异步通信接口,在嵌入式系统、微控制器及其他设备间的数据传输中有广泛应用。Verilog是一种用于设计与验证数字逻辑电路的硬件描述语言,适用于包括UART在内的多种通信接口的设计。 本段落将深入探讨如何用Verilog实现UART串口模块及其关键知识点。 首先,理解UART(通用异步收发器)的工作原理非常重要:它基于起始位、数据位、奇偶校验位和停止位来传送信息。发送时,数据被转换为连续的比特流;接收端则将此比特流转换回原始的数据格式。此外,UART支持多种波特率以适应不同的传输速度需求。 在Verilog中实现一个完整的UART串口模块需要关注以下几个方面: 1. **波特率发生器**:该组件负责生成定时信号,用分频技术来确定合适的时钟周期,并确保发送和接收的同步性。例如,在9600bps的波特率下,系统时钟需经适当处理以满足此需求。 2. **移位寄存器**:用于数据格式转换的核心部分——在发送过程中将并行数据转为串行流;反之亦然。 3. **状态机设计**:有效管理UART操作的不同阶段(如等待起始位、接收/发送数据等),确保通信协议的正确执行。 4. **控制逻辑**:处理与外部设备交互的各种信号,保证传输过程中的可靠性和效率。 5. **数据缓冲区**:通过FIFO结构实现待发或已收信息的存储功能,在不同波特率间进行同步操作时尤为关键。 在设计过程中还需注意以下几点: - 同步和异步处理原则的应用,以适应可能存在的跨时钟域通信问题。 - 错误检测与恢复机制的设计(如奇偶校验、CRC等),确保数据传输的准确性。 - 中断逻辑的实现,以便于处理器在特定事件发生时做出响应。 - 设计兼容性考虑:确保所设计模块符合标准接口要求。 综上所述,利用Verilog语言结合对UART通信协议的理解及数字系统的设计原则,可以构建出一个高效且可靠的UART串口模块。这不仅需要深入了解上述各个组成部分的功能和实现方式,还需根据实际硬件平台与应用需求进行优化调整。
  • 同步FIFOFPGA Verilog设计及Quartus工程+档说明.rar
    优质
    该资源包包含一个用于FPGA的设计文件,具体实现了一个同步FIFO(先进先出)模块,采用Verilog硬件描述语言编写,并附带详细的文档说明和Quartus工程文件。 同步FIFO模块用于FPGA设计的Verilog源码及Quartus工程文件包含文档说明,实现读写功能,并且具备地址产生和保护机制以防止FIFO被读空或写满的情况。此外,该设计还提供空、满信号指示。 模块接口定义如下: - 输入端口:sys_clk, sys_rst_n, wr_en, wr_data, rd_en - 输出端口:(此处省略具体输出端口列表,请参考相关文档)