Advertisement

关于LQR在智能车辆路径跟踪控制中的应用研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了线性二次型调节器(LQR)技术在智能车辆路径跟踪控制系统中的应用效果与优化策略,以实现更加精确和平稳的自动驾驶。 路径跟踪问题是智能车辆研究中的关键技术之一,其核心在于开发一种有效的控制算法来使车辆能够精确地遵循预先规划的路线。本段落主要探讨了线性二次型最优控制(LQR)在智能车路径跟踪应用方面的具体实现,包括建立智能车辆模型、算法的实际运用以及选择不同工况下的路径处理过程,并且分析了 LQR 控制方法在此领域内的优势与局限性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LQR
    优质
    本研究探讨了线性二次型调节器(LQR)技术在智能车辆路径跟踪控制系统中的应用效果与优化策略,以实现更加精确和平稳的自动驾驶。 路径跟踪问题是智能车辆研究中的关键技术之一,其核心在于开发一种有效的控制算法来使车辆能够精确地遵循预先规划的路线。本段落主要探讨了线性二次型最优控制(LQR)在智能车路径跟踪应用方面的具体实现,包括建立智能车辆模型、算法的实际运用以及选择不同工况下的路径处理过程,并且分析了 LQR 控制方法在此领域内的优势与局限性。
  • 轨迹
    优质
    本研究聚焦于智能车辆的轨迹跟踪控制技术,探索并优化算法以实现精准、稳定的自动驾驶路径跟随,提升道路安全与驾驶体验。 为了适应系统模型的需求,我们建立了车辆三自由度动力学模型,该模型涵盖了横向、纵向及横摆三个方向的运动,并结合基于魔术公式的轮胎模型,在小角度转向的基础上对车辆模型进行了进一步简化,降低了复杂性,为后续轨迹跟踪控制的研究奠定了基础。接下来研究了非线性模型预测控制方法,并将其转化为易于求解的线性化形式。我们详细探讨了这一转化过程中的各种变换,并建立了相关的预测模型和目标函数。 此外,还深入研究了线性化误差、车辆动力学约束条件以及二次规划问题,基于这些理论结合车辆仿真模型设计出了模型预测轨迹跟踪控制器。在此过程中,特别关注了预测时域对系统性能的影响,通过速度与附着系数输入制定了一系列模糊控制规则,并确定了最优的预测时域参数。最终利用模糊控制原理开发了一种变时域自适应轨迹跟踪控制器。 为了验证所提出控制器的有效性,在多种工况下使用MATLAB/Simulink和Carsim软件搭建了一个联合仿真平台进行了测试。此外,还考虑到了参考路径上可能存在的障碍物情况,并在此基础上研究了避障轨迹跟踪控制策略。我们设计了一种双层系统:上层为基于模型预测算法的局部路径规划模块;下层则是负责执行具体跟随动作的轨迹跟踪控制系统。 通过以上工作,我们的目标是提高车辆在复杂环境中的自主导航能力,特别是在存在动态障碍物的情况下能实现安全、高效的行驶路线选择与实时调整。
  • 自动驾驶模型预测
    优质
    本研究聚焦于自动驾驶领域中的路径跟踪技术,通过开发先进的模型预测控制系统,旨在提高车辆在复杂驾驶环境下的导航精确度与安全性。 在自动驾驶技术的研究领域内,针对自动驾驶车辆路径规划的轨迹跟踪问题是一个亟待解决且需要优化的关键课题。本段落基于模型预测控制(Model Predictive Control, MPC)理论展开研究,具体探讨了以下三个方面的内容:首先,为了解决自动驾驶车辆对预定路径进行有效追踪的问题,引入传统的MPC理念,并设计了一套适用于该场景的轨迹跟踪策略;其次,在解决路径跟随过程中出现的稳定性差和适应目标速度变化能力不足等问题时,进一步提出了采用终端状态等式约束的改进型MPC方法;最后,在研究中为了提升车辆在跟随过程中的响应速度与稳定性能,提出了一种结合预测时间范围内系统输入输出收缩限制(Predictive Input and Outputs Contractive Constraint, PIOCC)的MPC轨迹跟踪控制策略。
  • MPC自动驾驶局部避障规划及
    优质
    本研究探讨了模型预测控制(MPC)技术在自动驾驶汽车中用于局部障碍物回避路径规划和实时路径追踪的应用效果与优化策略。 在自动驾驶车辆行驶过程中,障碍物会对安全构成较大威胁。因此,在遇到障碍物的情况下需要重新规划参考路径,确保新路径能够避开这些障碍,并且让车辆严格遵循新的路线来避免事故的发生。 本段落研究了如何通过模型预测控制(MPC)理论解决自动驾驶技术中的局部避障路径规划和路径跟踪问题,以保证在存在障碍的场景下,自动驾驶汽车的安全性和操控稳定性。
  • MATLAB实现:纯与Stanley算法等方法
    优质
    本研究探讨了在MATLAB环境中运用多种技术进行智能车辆路径跟踪控制的方法,重点比较了纯跟踪控制器和Stanley算法的效果。 本段落探讨了智能车辆路径跟踪控制的MATLAB实现方法,主要涉及纯跟踪控制、Stanley算法以及其他相关线性算法的应用。通过这些技术,可以编写出能够根据所需路径进行精确追踪的MATLAB程序。文章的核心内容包括智能车辆、路径跟踪控制、纯跟踪控制和Stanley控制算法等关键词,并详细研究了如何利用MATLAB实现智能车辆路径跟踪中的纯跟踪与Stanley控制算法的研究。
  • :纯及Stanley算法等线性相方法,基MATLAB实现
    优质
    本项目聚焦于智能车辆路径跟踪技术,采用纯跟踪控制与Stanley算法,并利用MATLAB进行仿真验证,以实现高效准确的路径追踪。 智能车辆路径跟踪控制是自动驾驶技术中的关键环节之一,它决定了汽车如何准确地沿着预设路线行驶。我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及其他可能涉及的相关线性算法。 纯跟踪控制是一种基础的方法,通过比较车辆的实际位置和期望轨迹之间的偏差来调整转向角。这种策略的核心在于设计合适的控制器(如PID控制器)以减小误差并确保稳定行驶。在MATLAB中实现时,可以通过建立车辆模型、定义目标路径以及设置控制器参数来进行仿真。 Stanley控制算法是一种更先进的方法,由Christopher Thrun等人于2005年提出。该算法利用前向传感器信息(如激光雷达或摄像头)来确定横向和纵向偏差,并将这些偏差转换为方向盘命令以实现无滑移跟踪。在MATLAB中应用Stanley控制通常包括三个步骤:获取传感器数据、计算偏差以及将其转化为方向盘指令。 除了这两种方法,还有其他线性相关算法可以用于路径追踪,例如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化性能指标来设计控制器。MPC则是一种前瞻性的策略,它考虑未来多个时间步的行为以优化控制决策。 智能车辆路径跟踪技术是自动驾驶领域的重要组成部分,涉及控制理论、传感器融合及车辆动力学等多个方面。借助MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,并为实际应用提供坚实的基础。
  • Pure Pursuit算法
    优质
    本研究聚焦于利用Pure Pursuit算法优化智能车辆的路径追踪性能,探讨其在不同行驶条件下的适用性与改进策略。 基于Pure Pursuit算法的智能车路径跟踪方法简单易实现。
  • 自主驾驶规划及轨迹-规划、轨迹、MPC模型预测
    优质
    本文聚焦于自主驾驶车辆中的路径规划与轨迹跟踪控制技术,深入探讨了基于MPC(模型预测控制)的方法,旨在提升自动驾驶系统的安全性和效率。 为了减少道路突发事故并提高车辆通行效率,研究车辆的紧急避障技术以实现自主驾驶至关重要。基于车辆点质量模型,我们设计了非线性模型预测控制(MPC)路径规划器;同时,根据车辆动力学模型,我们也开发了线性时变MPC轨迹跟踪器。
  • 模糊PID
    优质
    本研究探讨了模糊PID控制算法在智能小车路径跟踪和速度调节中的应用效果,旨在提高小车的自主导航能力和稳定性。 在智能小车的自动寻迹过程中,方向控制与速度控制都面临高度非线性的挑战。通过采用模糊 PID 控制算法,实现了对这两方面的优化控制:具体来说是利用模糊 PD 算法来调节小车的方向,并使用模糊 PID 算法进行速度调控。这一方案在智能车控制系统中应用后,弥补了传统 PID 控制的局限性,借助于模糊规则来进行推理和决策,在运行过程中实现了对 PID 参数的实时优化调整。