Advertisement

基于KNN的鸢尾花分类实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用K近邻算法对经典的鸢尾花数据集进行分类实验,通过调整参数优化模型准确性,旨在展示机器学习在模式识别中的应用。 KNN的Python代码:样本数据为150*4的二维数组,代表了150个样本,每个样本包含4个属性,分别是花瓣长度、宽度以及花萼长度、宽度。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • KNN
    优质
    本项目采用K近邻算法对经典的鸢尾花数据集进行分类实验,通过调整参数优化模型准确性,旨在展示机器学习在模式识别中的应用。 KNN的Python代码:样本数据为150*4的二维数组,代表了150个样本,每个样本包含4个属性,分别是花瓣长度、宽度以及花萼长度、宽度。
  • KNN模型
    优质
    本项目通过应用经典的K近邻算法来对鸢尾花数据进行分类,旨在展示如何使用Python和机器学习库Scikit-learn实现一个简单的模式识别任务。 对鸢尾花数据进行分类时可以使用KNN算法,并且可以直接在MATLAB上运行。
  • KNN算法展示
    优质
    本项目通过经典的K近邻(KNN)算法对著名的鸢尾花数据集进行分类,展示了如何利用Python和机器学习库实现模型训练与预测。 简易KNN模型演示:鸢尾花的分类
  • SVM.zip
    优质
    本项目为基于支持向量机(SVM)对经典的鸢尾花数据集进行二分类或多分类任务的研究与实践,探索SVM在模式识别中的应用。 本资源包含鸢尾花训练数据和源代码,代码注释详细,适合初学者学习机器学习。
  • SVM代码
    优质
    本项目通过支持向量机(SVM)算法对经典的鸢尾花数据集进行分类研究,提供详细的代码实现和参数调优过程。 最近在学习机器学习,并使用SVM算法实现了鸢尾花分类任务。为了便于大家相互交流和学习,我对代码中的每一行都添加了详细的注释。希望这段代码能够帮助到有需要的同学一起进步。
  • Python中SVM
    优质
    本项目运用Python语言实现了基于支持向量机(SVM)的鸢尾花(Iris)数据集分类。通过详细的数据预处理和模型训练过程,展现了SVM在解决多类分类问题中的应用效果。 基于SVM算法实现鸢尾花数据集分类,并输出混淆矩阵。
  • 决策树
    优质
    本项目采用决策树算法对经典的鸢尾花数据集进行分类研究,通过优化参数和模型选择提高分类准确率,为机器学习初学者提供实践参考。 实现决策树对鸢尾花进行分类,并将决策树进行了可视化展示。使用了图片和PDF两种格式显示结果,相关代码可以直接下载并运行。
  • 数据集KNN(使用sklearn).zip
    优质
    本项目为基于Python库sklearn实现的K近邻(K-Nearest Neighbors, KNN)算法应用案例,利用经典鸢尾花(Iris)数据集进行模型训练和分类预测。 在机器学习领域,“鸢尾花”通常指的是一个经典的数据集“Iris dataset”,也称为“安德森鸢尾花卉数据集”。该数据集由英国统计学家兼生物学家罗纳德·费雪于1936年首次收集并整理发布,包含150个样本观测值,涵盖了三种不同类型的鸢尾花(Setosa、Versicolor和Virginica),每种类型各有50个样本。每个样本包括四个特征:萼片长度、萼片宽度、花瓣长度以及花瓣宽度,这些都是连续数值型变量。目标变量则是确定该样本所属的鸢尾花类别。 由于其数据量适中且易于理解,“鸢尾花”数据集经常被用作初学者实践机器学习算法的第一个项目案例。它适用于多种监督学习方法的应用,如逻辑回归、K近邻(KNN)、支持向量机(SVM)、决策树以及各种集成技术等。
  • 使用KNN数据进行
    优质
    本项目采用K近邻算法(K-Nearest Neighbors, KNN)处理经典的鸢尾花(Iris)数据集,实现花朵种类的自动识别与分类。通过调整参数优化模型性能,展示了机器学习在模式识别中的应用。 本段落介绍了使用KNN算法实现鸢尾花数据分类与可视化的完整资料,包括代码、运行结果及详细注释,下载后即可直接运行。
  • sklearn库KNN算法在应用
    优质
    本实践探讨了利用Python的sklearn库实现K近邻(KNN)算法,并将其应用于经典的鸢尾花数据集分类任务中,旨在通过调整参数优化模型性能。 利用Python实现KNN算法完成鸢尾花分类任务的步骤如下: 1. 数据集准备: (1) 使用SCIKIT-LEARN自带的鸢尾花数据集,并获取其后两个特征,形成原始数据集D。 (2) 待决策样本集D1生成:基于原始二维特征空间中两种特征取值的最小和最大值,确定该数据集的矩形包围盒。在此基础上,在上下左右各个方向各扩展1单位,以step=0.02为采样间隔在该矩形区域内等间距抽取离散位置形成待决策样本集D1。 (3) 训练集与测试集生成:将原始数据集D按照类别分层随机打乱,并通过hold-out方式将其划分为训练集(80%)和测试集(20%)。 2. 模型选择: 对训练集进行规范化预处理并记录所使用的参数值,以便后续使用相同的参数对其他数据进行标准化或归一化。 3. K-近邻分类模型评估: (1) 使用之前确定的参数对测试集中每个样本进行预处理。 (2) 根据优选出的最佳K值(或者你自己设定的一个合适的K值),利用经过预处理后的每一个测试样本来预测其类别,最终得到所有测试样本的类别预测结果。 (3) 通过将所有的分类预测结果与实际答案对比生成混淆矩阵,并对其可视化以方便分析模型性能。 4. K-近邻分类器应用: 在完成上述步骤后,就可以利用训练好的KNN模型对新的未知数据进行分类了。