
2014年全国数学建模竞赛A题论文
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本论文为2014年全国数学建模竞赛A题参赛作品,通过建立数学模型解决实际问题,展示了作者团队在数学理论与实践应用方面的研究能力。
为了减少月球探测器在有限推力作用下软着陆所需的燃料消耗,我们提出了一种利用非线性规划方法求解最优控制问题的方法。首先,基于庞德里亚金极大值原理,将该问题转化为数学上的两点边值问题;接着,在考虑边界条件及横截条件下,将其进一步转换为关于共轭变量初值和末时刻的优化问题。然后采用非线性规划技术来解决由此产生的参数优化难题。
为了降低对初始共轭变量选择敏感性的要求,我们引入了控制变量与共轭变量之间的变换关系,用最初的控制变量数值替代了原始的共轭变量数值进行求解。实验仿真结果表明,该方法能够成功实现月球表面软着陆,并且相较于传统的打靶法减少了2.1%的燃料消耗量。整个软着陆过程被细分为六个阶段。
在确保探测器准确降落在预定区域的过程中,轨道设计与控制策略的设计是关键因素之一。因此,利用数学建模方法来研究和解决嫦娥三号月球软着陆轨道设计及相应控制策略具有重要的意义。
全部评论 (0)
还没有任何评论哟~


