Advertisement

基于双闭环控制的降压型DC/DC变换器仿真研究 (2011年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文针对降压型DC/DC变换器进行仿真研究,采用双闭环控制系统优化其性能。通过Simulink搭建模型并分析结果,探讨了该方法的有效性与应用前景。 PWM开关电源系统通常采用电流与电压双闭环控制方式。以Buck型变换器为例,在构建PWM降压开关电源功率级模型的基础上,得出其小信号等效电路图以及基于电流控制的Buck型开关电源系统的电路图,并利用Matlab进行频率分析。通过设计双闭环反馈补偿电路并进行仿真分析来验证参数选择的合理性。建立的Buck型变换器模型不仅适用于标准的Buck变换器,还可以应用于其衍生出的全桥变换器中。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DC/DC仿 (2011)
    优质
    本文针对降压型DC/DC变换器进行仿真研究,采用双闭环控制系统优化其性能。通过Simulink搭建模型并分析结果,探讨了该方法的有效性与应用前景。 PWM开关电源系统通常采用电流与电压双闭环控制方式。以Buck型变换器为例,在构建PWM降压开关电源功率级模型的基础上,得出其小信号等效电路图以及基于电流控制的Buck型开关电源系统的电路图,并利用Matlab进行频率分析。通过设计双闭环反馈补偿电路并进行仿真分析来验证参数选择的合理性。建立的Buck型变换器模型不仅适用于标准的Buck变换器,还可以应用于其衍生出的全桥变换器中。
  • FBCLLC-plecs.rar_DC-DC_DC-DC仿
    优质
    本资源包含使用PLECS软件进行双向DC-DC变换器闭环控制系统仿真的文件。其中包括建模、仿真参数设置及结果分析等内容,适用于电力电子技术学习与研究。 双向DC电路的Plecs仿真包含闭环控制,并支持联合仿真。
  • BuckBoost.zip_DC/DC _DC/DC_系统
    优质
    本项目为一款高效能Buck-Boost型DC/DC转换器设计,采用独特的双闭环控制策略实现精准电压调节和快速动态响应。 在电子工程领域,DC-DC转换器是至关重要的组成部分之一,它用于不同电压等级之间的直流电能转换。本段落将深入探讨一种特殊的DC-DC转换器——Buck-Boost双向转换器,并重点介绍其双闭环控制机制。 首先理解什么是Buck-Boost转换器:这是一种既能实现降压(即Buck模式)也能实现升压(即Boost模式)的电路,它在电源电压与负载电压之间提供了极大的灵活性。这种转换器可以在输入电压低于或高于输出电压的情况下有效工作,在许多应用中得到了广泛的应用,如电池供电系统、太阳能发电系统以及工业设备等。 双向DC-DC转换器的设计关键在于其电路拓扑结构。Buck-Boost电路通常包括一个开关元件(例如MOSFET)、储能电感和输出滤波电容。通过控制开关元件的通断时间比,可以改变电感中能量的存储与释放情况,从而实现对输出电压的有效调节。 接下来我们讨论双闭环控制系统的设计理念:这是一种提高系统稳定性和效率的方法,包括电流环路和电压环路两个部分。其中电流环作为内环负责确保流过开关元件的电流保持恒定,并防止过载导致器件损坏;而外环即电压环的主要任务则是维持输出电压的稳定性,在负载变化或输入电压波动的情况下也能保证其稳定。 在电流控制环节中通常采用PI(比例积分)控制器,通过实时调整开关元件的工作占空比来实现对流经系统的电流进行精确调控。其中的比例部分用于快速响应系统动态变化,而积分部分则可以消除稳态误差以使实际输出尽可能接近设定值;而在电压环路方面同样使用了PI控制策略,并且反馈信号为输出端的电压情况,在负载和电源输入波动时仍能保持较高的精度。 通过仿真工具如MATLAB Simulink中的buckboost.mdl文件,工程师可以对Buck-Boost双向DC-DC转换器进行模拟实验。在此过程中调整参数并观察系统在各种条件下的动态表现,从而优化控制策略以提升整体性能指标。 综上所述,Buck-Boost双向DC-DC转换器是电子设备中的关键组件之一,其双闭环控制系统确保了输出电压的稳定性和系统的高效运行。通过深入了解这种转换器的工作原理及其控制方法,我们可以更好地设计并改进电源系统以适应不同的应用场景需求。
  • DC-DC两相交错并联Buck-Boost仿:单性能分析
    优质
    本文探讨了基于双向DC-DC变换器构建的两相交错并联Buck-Boost电路,并对其在单环和双闭环控制下的动态特性进行了深入仿真,以评估其运行效率及稳定性。 本段落探讨了两相交错并联Buck-Boost变换器在双向DCDC转换中的仿真研究,特别关注单环与双闭环控制性能的比较分析。该研究构建了一个包含开环、电压单环以及电压电流双闭环三种控制方式的仿真模型,并且使用Matlab Simulink进行建模和仿真实验。 采用的是双向管子构成的两相交错并联Buck-Boost变换器,其优势在于能够实现良好的电感均流效果。通过详细的电流细节展示可以观察到,即使在复杂的电路条件下也能保持稳定的性能输出。 这项仿真研究为理解与优化此类变换器的设计提供了有价值的见解,并且展示了如何利用先进的控制策略来提高双向DCDC转换的效率和可靠性。
  • 交错并联DC-DC中Boost电流策略
    优质
    本研究探讨了在交错并联型DC-DC变换器系统中,针对Boost变换器采用电压与电流双重闭环控制策略的效果和优势,旨在提高系统的稳定性和效率。 在现代电力电子技术领域内,交错并联型DC-DC变换器作为一种高效电源转换拓扑结构受到了广泛的关注与研究。这种类型的变换器主要任务是在直流输入电压的基础上,通过调节内部参数来输出稳定或可调的直流电压。其中Boost变换器作为升压型DC-DC变换器的一种典型形式,在将低电压升高至所需值方面扮演着重要角色,并在电源管理中不可或缺。 对于交错并联型DC-DC变换器而言,其核心在于实现对输出电压和电流的有效闭环控制策略,这能够确保系统的稳定性和响应速度。本段落研究重点集中在两台及三台Boost变换器的交错并联结构上,通过合理设计相应的控制方法来优化整个系统性能。 当采用两台Boost变换器进行交错并联时,可以通过精心安排相位差实现电流纹波的有效降低和效率提升;而扩展到三个或更多这样的单元协同工作,则需要更加复杂的电压-电流双闭环控制系统以确保精确度。这种技术不仅能够提高功率密度,还能增强系统的动态响应特性。 在实际应用中,交错并联型DC-DC变换器可以广泛用于电动汽车、不间断电源(UPS)及各种通信设备等领域,这些场景对供电稳定性有着极高的要求。因此,在这些领域内深入研究和优化控制策略具有重要的实用价值和技术挑战性。 从理论分析到实践操作层面来看,此类变换器的研究工作需要涵盖电力电子学的基本原理、关键电路设计以及软件算法等多个方面。通过这样的综合探究过程,不仅可以推动整个行业技术的进步与发展,还能进一步满足现代社会对高效且可靠的电源系统日益增长的需求。
  • MATLAB SimulinkDAB高频隔离DC-DC仿与电电流(支持功率向流动)
    优质
    本文基于MATLAB Simulink平台,对DAB型高频隔离DC-DC变换器进行仿真分析,并提出了一种有效的电压和电流双闭环控制策略,以实现高效、稳定的能量双向传输。 本段落介绍了基于MATLAB Simulink的高频隔离DC-DC变换器模型(DAB-双有源全桥)的设计与仿真过程。该模型采用电压电流双闭环控制策略,支持功率双向流动,并实现了ZVS软开关技术。所有仿真实验均在MATLAB 2017b环境下完成,仅供学习交流使用。
  • 向CLLC谐振仿,包括开与电仿DC-DC隔离,采用均技术
    优质
    本研究构建了双向CLLC谐振变换器的仿真模型,涵盖开环及电压闭环控制策略,并运用均变频控制技术优化其性能。 双向LLC(CLLC)谐振变换器仿真模型以及双向DC-DC隔离型变换器的开环仿真和电压闭环仿真相关内容都进行了均变频控制的研究。
  • 单输出DC-DC-MATLAB开发
    优质
    本项目专注于单输出降压型DC-DC转换器的设计与优化,采用MATLAB进行仿真和闭环控制系统开发,旨在提高电源效率及稳定性。 单输出降压转换器(Buck转换器)是一种广泛应用于电力电子系统中的直流-直流(DC-DC)转换器,用于将高电压转换为低电压以满足不同负载的需求。在本项目中,我们将专注于使用MATLAB进行闭环控制的单输出降压DC-DC转换器的设计与仿真。 作为强大的数学计算和建模工具,MATLAB提供了丰富的信号处理及控制系统设计功能。PI控制器是常用的选项之一,在Buck转换器的应用场景下能够提供良好的稳态性能以及快速动态响应。该控制器由比例(P)项和积分(I)项组成:前者对误差的当前值作出迅速反应;后者则通过累积历史上的误差来消除系统的静态偏差。 在设计过程中,首先需要建立Buck转换器的数学模型。这一模型通常基于开关周期内的平均电压与电流,并且考虑电感、电容及负载电阻等元件特性的影响。借助MATLAB中的Simulink库工具,例如“Discrete-Time Integrator”用于模拟电感、“Zero-Order Hold (ZOH)”表示开关动作以及“Voltage Source”代表输入电源等方式构建该模型。 接下来是PI控制器的设计环节。其参数(比例系数Kp和积分系数Ki)可通过理论计算、经验公式或自动调整方法获得。“PID Tuner”工具在MATLAB中可用以确定最优的控制参数,从而优化系统的性能指标如超调量、上升时间和稳态误差等。 将设计好的控制器与Buck转换器模型连接起来形成闭环系统。通过Simulink中的“Sum”和“Gain”模块实现两者之间的交互作用。完成仿真模型后,可以调整输入电压值、负载变化或开关频率等多种条件来运行模拟程序,并观察输出电压的动态响应情况。 在评估仿真的结果时,主要关注以下几个方面: 1. 稳态误差:检查设定值与实际输出电压是否一致且偏差小; 2. 动态性能指标:包括上升时间、超调量和稳定时间等参数反映系统对负载或输入电压变化的响应速度; 3. 输出纹波大小,以评估电容滤波效果的好坏; 4. 系统稳定性检查是否存在振荡或其他不稳定行为。 根据仿真结果可能需要反复调整控制器参数来优化系统的性能。通过深入研究具体的MATLAB代码和Simulink模型可以获取更详细的设计步骤及数值结果。 总之,在单输出降压DC-DC转换器的闭环控制中,利用MATLAB进行PI控制器设计不仅能够实现精确电压调节而且还能适应系统变化确保其稳定运行。这整个过程涵盖了数学建模、控制器设计、系统仿真以及性能分析等多个环节,充分体现了MATLAB在电力电子领域中的强大功能和应用价值。
  • 有源全桥DC-DC_PI.rar
    优质
    本资源探讨了一种基于PI闭环控制的双有源全桥(DAB)DC-DC变换器设计,适用于电力电子领域中高效能量传输与转换应用。 双有源全桥(DAB)DC-DC变换器PI闭环控制的Matlab仿真研究
  • PSCADDC-DC仿
    优质
    本研究构建了基于PSCAD平台的双向DC-DC变换器仿真模型,深入分析其工作原理及性能特性,为电力电子系统的优化设计提供理论支持。 双向DC-DC变换器(Bi-directional DC-DC Converter, BDC)能够在保持输入和输出电压极性不变的情况下,根据实际需求改变电流的方向,实现双象限运行的直流到直流转换功能。它是一种高效的电源转换装置,能够将一个直流电压转换为另一个或几个不同值的电压,并且具有高效、节能、经济和实用等特点。