Advertisement

基于图神经网络的工业控制网络异常检测方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种创新的工业控制网络异常检测方法,采用图神经网络技术,有效提升了复杂工控系统的安全性和稳定性。 网络异常检测技术在入侵检测领域受到了广泛关注。然而,现有的研究大多局限于单点的网络异常检测,对于不断演化的联合攻击及恶意软件难以做出及时有效的响应。 本段落提出了一种基于图神经网络的工控网络异常检测算法。该方法结合了每个节点自身的属性信息及其在网络拓扑结构中邻近节点的信息来实现对网络异常行为的有效识别。具体而言,在第一步中,每一个网络节点会生成包含连接邻居特征及交互情况的状态向量;随后利用不动点理论进行迭代更新以进一步优化状态表示;最后通过神经网络模型整合自身与周边节点的综合信息提取高层次抽象特征,并以此作为该节点在工控环境中的行为表征。基于此,我们采用聚类分析来检测异常活动。 实验验证了所提算法的有效性,在保持高准确率的同时也展现了良好的鲁棒性能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究提出了一种创新的工业控制网络异常检测方法,采用图神经网络技术,有效提升了复杂工控系统的安全性和稳定性。 网络异常检测技术在入侵检测领域受到了广泛关注。然而,现有的研究大多局限于单点的网络异常检测,对于不断演化的联合攻击及恶意软件难以做出及时有效的响应。 本段落提出了一种基于图神经网络的工控网络异常检测算法。该方法结合了每个节点自身的属性信息及其在网络拓扑结构中邻近节点的信息来实现对网络异常行为的有效识别。具体而言,在第一步中,每一个网络节点会生成包含连接邻居特征及交互情况的状态向量;随后利用不动点理论进行迭代更新以进一步优化状态表示;最后通过神经网络模型整合自身与周边节点的综合信息提取高层次抽象特征,并以此作为该节点在工控环境中的行为表征。基于此,我们采用聚类分析来检测异常活动。 实验验证了所提算法的有效性,在保持高准确率的同时也展现了良好的鲁棒性能。
  • 流量
    优质
    本研究提出了一种基于深度神经网络技术的新型异常流量检测方法,旨在提高网络安全防御能力,有效识别和应对未知威胁。 项目介绍 本项目为基于神经网络的流量异常检测——Traffic Anomaly Detection based on Neural Network。随着网络规模的不断扩大,危害系统资源的风险也在增加。入侵检测系统(IDS)有助于识别恶意入侵行为,保护网络安全。本项目采用基于网络的IDS,并结合流行的深度神经网络技术,实现基于深度学习模型的流量异常检测。 研究内容 网络入侵检测系统(NIDS)被设计用来有效防御各种类型的网络攻击,并进一步确保网络系统的正常运行。目前主要的研究方向是通过分析网络流量来识别正常和异常行为的方法。本项目尝试将神经网络模型应用于入侵检测中,以解决高误报率的问题。 技术要求 预处理数据集 选择CICIDS2017作为数据集,这是加拿大网络安全研究所于2017年发布的数据集。 使用Pandas对CICIDS2017数据集进行预处理,包括清洗和标准化操作。 建模 利用TensorFlow中的Keras库建立深度神经网络或长短期记忆(LSTM)模型。 优化模型并调整超参数。 模型设计流程 数据预处理:整合、选取特征,并转换特征的数据类型。
  • Python流量
    优质
    本研究利用Python编程语言开发神经网络模型,旨在有效识别和预测网络流量中的异常行为,保障网络安全与稳定。 【作品名称】:基于Python神经网络的流量异常检测 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:本项目为基于神经网络的流量异常检测(Traffic Anomaly Detection based on Neural Network)。随着网络规模的不断扩大,危害系统资源的风险也在增加,而入侵检测系统(IDS)有助于检测恶意行为。该项目使用基于网络的IDS,并结合流行的深度神经网络技术,实现基于深度学习的流量异常检测。 【技术要求】: - 数据预处理 - 使用CICIDS2017数据集进行实验。 - 利用Pandas对CICIDS2017数据集进行清洗和标准化处理。 - 模型建立与优化 - 构建深度神经网络(DNN)或长短期记忆模型(LSTM)来检测异常流量。 - 使用TensorFlow平台中的Keras库构建神经网络模型,并通过调整超参数等方式进行模型优化。
  • PID
    优质
    本研究提出了一种创新性的基于神经网络优化的传统PID(比例-积分-微分)控制器的方法,以提高控制系统性能。通过智能调整PID参数,该方法能够有效解决传统PID控制中遇到的问题,如参数整定困难和对系统模型变化的适应性差等,特别适用于复杂动态系统的精确控制。 利用神经网络反向传播方法来调整比例积分控制器的参数以实现优化。
  • 入侵
    优质
    本研究提出了一种利用神经网络技术改进的网络入侵检测方法,旨在提高对新型网络攻击模式的学习和识别能力。通过优化模型架构与训练策略,有效增强系统的实时响应及防御效能。 《基于神经网络的网络入侵分析算法》主要探讨了网络安全领域及机器学习技术的应用,尤其是神经网络在其中的作用。网络安全是信息技术中的关键环节,旨在保护系统免受恶意攻击与未经授权访问的危害。通过识别异常行为来发现潜在威胁的方法被称为网络入侵分析,在这种情况下,神经网络被用于检测和分类正常活动与攻击性行为。 该研究中使用了一种融合了模糊C均值聚类(FCM)和长短期记忆(LSTM)的神经网络模型。模糊C均值算法能够处理边界不明确的数据集,并有助于识别潜在类别结构;而LSTM则是一种专门用于时间序列数据分析的循环神经网络,它通过记住过去的上下文信息来预测未来趋势。 在网络安全场景下,流量数据包含丰富的特征如源IP、目标IP地址等。这些特性可用于训练模型以区分正常活动和异常行为。结合FCM技术进行预处理后,LSTM能够更精确地学习并分类不同的网络模式,从而提高检测入侵的准确性和鲁棒性。 该项目所使用的netattack.mat数据集包含了模拟的各种类型攻击样本(例如拒绝服务、扫描等)及其对应的正常流量记录。通过标记的数据训练神经网络模型,并在实际应用中对其进行验证和优化,可以有效提升网络安全防护能力并及时识别潜在威胁。 总体而言,《基于神经网络的网络入侵分析算法》展示了如何利用先进的机器学习技术解决复杂的安全挑战,为提高互联网环境下的安全水平提供了新的视角与解决方案。
  • 内模
    优质
    本研究提出了一种创新的内模控制策略,利用先进的神经网络技术优化控制系统性能,特别适用于复杂工业过程中的精确控制。该方法通过学习和模仿理想控制器行为,实现了高精度、强鲁棒性的控制效果,在多个实际应用场景中展现了显著优势。 使用RBF神经网络构建内部模型,并求得逆模型,整个闭环过程能够良好地控制跟踪。
  • FFTNN谐波
    优质
    本研究提出了一种基于FFTNN(快速傅里叶变换神经网络)的创新性谐波检测方法,有效提升了电力系统中谐波信号识别与分析的准确性和效率。 FFTNN(快速傅立叶变换神经网络)是一种结合了傅立叶变换原理与神经网络技术的高级方法,主要用于谐波检测。在电力系统中,非线性负载会导致电流或电压偏离正弦波形,产生谐波现象。这种现象可能会损害设备并降低系统的整体效率,因此准确地进行谐波检测非常重要。 傅立叶变换能够将时域信号转换为频域表示,揭示不同频率成分的分布情况,在分析周期性信号中广泛应用快速傅立叶变换(FFT),因为它能高效而精确地解析这些信号。在FFTNN技术框架内,通过训练神经网络来识别和预测谐波模式。 神经网络是一种模拟人脑处理信息方式的人工智能模型,由大量相互连接的节点组成,每个节点执行特定的信息处理任务。在网络中,输入层接收经过快速傅立叶变换后的数据;隐藏层进行复杂的数据解析工作;输出层则提供最终的结果或预测值,在此案例中为谐波估计。 “傅立叶BP谐波分析”可能涉及一个使用反向传播(BP)算法训练的神经网络模型。通过调整连接权重来最小化误差,该方法通常用于优化多层神经网络性能。在电力系统应用背景下,这种方法可以处理来自系统的时域数据,并学习其频域特征。 实际操作中,FFTNN流程可能包括以下步骤: 1. 数据预处理:收集并过滤、标准化电力系统的原始信号。 2. FFT计算:对这些经过预处理的信号执行快速傅立叶变换以获得它们在频率空间中的表示形式。 3. 特征提取:从频域数据中选取与谐波相关的特征,例如特定频率点上的振幅和相位信息等。 4. 训练神经网络:利用反向传播算法以及其他优化策略训练模型,使其能够识别并预测不同输入信号对应的谐波特性。 5. 验证测试:在独立的数据集上评估模型的准确性和性能指标如误差率、精度等。 6. 谐波检测应用:使用经过充分训练后的模型对新的电力系统数据进行分析和监测。 FFTNN方法的主要优势在于其灵活性以及适应复杂谐波行为的能力。然而,也存在一些潜在挑战,例如过拟合问题、长时间的训练需求及噪声敏感性等。为改善性能,可以采用正则化技术、提前停止策略或更高效的网络架构如卷积神经网络和递归神经网络,并且还可以考虑集成学习方法。 综上所述,FFTNN代表了一种创新性的电力系统分析方式,它融合了经典信号处理技术和机器学习算法的优势,在解决谐波问题方面提供了新的视角。
  • BP-PID__PID___PID_ PID_
    优质
    简介:本研究探讨了将神经网络与PID控制相结合的技术,即BP-PID和神经网络PID控制方法,旨在优化控制系统性能,提高响应速度及稳定性。 神经网络自整定PID控制器,基于BP神经网络的Simulink模型。
  • YOLO v3零件研究.docx
    优质
    本研究探讨了基于YOLO v3神经网络在工业零件检测中的应用,提出了一种高效准确的检测方案,旨在提升制造业的质量控制水平。 一种基于YOLO v3神经网络的工业零件检测方法 本段落探讨了一种利用YOLO v3神经网络进行工业零件检测的方法。通过这种方法,可以有效提高零件识别的速度与精度,在实际生产中具有重要的应用价值。文档详细介绍了模型的设计思路、实验过程以及结果分析等内容。
  • Matlab
    优质
    本研究探讨了利用MATLAB平台进行神经网络预测控制的应用与实现。通过构建和训练神经网络模型,我们旨在优化控制系统性能,并提供对复杂系统动态特性的有效预测能力。 基于BP神经网络的非线性系统预测控制在Matlab中的实现方法探讨。