Advertisement

Altium Designer 2层4层6层板示例设计合集.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含使用Altium Designer软件创建的多层PCB电路板设计实例,涵盖从简单到复杂的2层、4层及6层布局方案。适合学习与参考。 2层板设计AT89C52 RC500Mifare读卡器PCB及原理图;16进11出PLC的2层板设计方案,包括原理图、PCB布局文件、物料清单以及供应商信息和物料价格;显示屏板的SCH PCB文件为2层设计;4层板设计HY57V561620CLT核心板(菊花链拓扑),提供完整的设计图纸及文档资料;FPGA DSP视频处理的4层PCB布局工整,包括原理图和布线方案;AR2000-BGA手机用的6层PCB文件,采用2阶盲埋孔设计;LPC32X0核心板与全志H8VR一体机的核心板均为6层设计方案,并附有DSN原理图及PCB布局;飞思卡尔IMX6 4片DDR3 设计为8层方案,包括详细的DSN原理图和布线文件。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Altium Designer 246.rar
    优质
    本资源包含使用Altium Designer软件创建的多层PCB电路板设计实例,涵盖从简单到复杂的2层、4层及6层布局方案。适合学习与参考。 2层板设计AT89C52 RC500Mifare读卡器PCB及原理图;16进11出PLC的2层板设计方案,包括原理图、PCB布局文件、物料清单以及供应商信息和物料价格;显示屏板的SCH PCB文件为2层设计;4层板设计HY57V561620CLT核心板(菊花链拓扑),提供完整的设计图纸及文档资料;FPGA DSP视频处理的4层PCB布局工整,包括原理图和布线方案;AR2000-BGA手机用的6层PCB文件,采用2阶盲埋孔设计;LPC32X0核心板与全志H8VR一体机的核心板均为6层设计方案,并附有DSN原理图及PCB布局;飞思卡尔IMX6 4片DDR3 设计为8层方案,包括详细的DSN原理图和布线文件。
  • Altium Designer指南
    优质
    《Altium Designer四层板设计指南》旨在为电子工程师提供详细的教程和技巧,帮助他们掌握使用Altium Designer软件进行高效、专业的四层电路板设计。 用Altium Designer 13 设计的四层板教程,如有错误,请批评指正!
  • PCB叠方案解析(46、8、10
    优质
    本文深入分析了4层至10层PCB的叠层设计原则与技巧,旨在帮助工程师优化电路性能,减少电磁干扰,提高产品竞争力。 当然可以。请提供您想要我重写的那段文字内容吧。
  • PCB:从4至12的详解
    优质
    本教程详细解析了从四层到十二层PCB的设计技巧与注意事项,涵盖信号完整性、电源分配网络及阻抗控制等关键技术。 PCB层叠设计是影响电路板电气性能与可靠性的关键环节,在此文中我们将探讨从四层至十二层不同结构的PCB设计方案。 对于4层板的设计而言,我们推荐三种不同的布局方式:首选方案一(见图1),这是最常见的四层PCB主选配置。在主要元器件位于底部或需要底层布线的关键信号情况下,则采用方案二;一般建议限制使用此选项。而当电路板以插件为主要装配形式时,通常选择方案三作为设计方案。 6层版的布局设计则提供四种不同的策略:优先考虑第三种(见图2),将S1层作为主要走线区域,并加大S1与PWR1之间的距离同时减小PWR1和GND2间的间隔以降低电源平面阻抗。在成本控制严格的数码消费类产品中,第一方案是常见的选择;它同样把重点放在了优先布设于S1的线路设计上。然而第二选项虽然保证了电源、地层相邻从而减少了电源电阻,但所有走线都暴露在外仅S1具备良好的参考平面;因此通常不推荐使用该方法,但在埋盲孔设计时可以考虑采用此策略。如果局部或少量信号有特殊布线需求,则第四方案比第三更适宜,它为S1提供了极佳的布设环境。 在处理十层板布局时,我们提供两种不同的配置:建议优先选择第一和第二种(见图3)。单一电源供应的情况下首先考虑使用第一种方式;设置层数间距以控制串扰。而需要双电源供应的情况则应采用方案二作为首选,并同样进行相应的间距调整来抑制干扰问题。 对于十二层板的布局,我们推荐两种不同的模式:建议优先选择第一和第三(见图4)。具体设计时需根据实际情况挑选合适的堆叠方案以确保PCB性能及可靠性达到最佳状态。 综上所述,实现有效的PCB层叠配置是一项复杂的任务,需要综合考量电气特性、耐用性以及经济成本等多重因素。本段落通过一系列实例介绍了四至十二层电路板的布局思路和方法,有助于读者理解这一设计过程,并将其应用于实际项目中去。
  • PCB技术中从4至12
    优质
    本文章提供从四层到十二层PCB的设计实例,深入解析不同层数电路板的优化布局与布线技巧,旨在帮助工程师提升多层PCB设计能力。 四层板的层叠方案推荐采用优选方案一(见图1)。该方案是常见四层PCB的主要设置方式。 当主要元器件位于BOTTOM布局或关键信号在底层布线时,可以考虑使用方案二;但一般情况下不建议选用此方案。对于以插件为主的电路板,通常会将电源放在中间的S2线路层中,并且将BOTTOM层设为地平面,从而形成屏蔽腔体(见图1)。 六层板的推荐层叠方案是优选三,另外可用方案一作为备选;备用方案二和四也可考虑使用(见图2)。
  • 4/6/8 华强PCB叠结构
    优质
    本产品为华强PCB叠层结构,提供4、6、8层选项。设计精密,适合各类电子产品需求,具有优良电气性能和稳定性。 华强PCB层压结构、叠层信息及阻抗模块提供了4/6/8层板等多种厚度的叠层选择,并包含详细的阻抗控制信息,是一份非常实用的内容,现在分享给大家。
  • RT1052 Altium 4原理图及PCB
    优质
    本资源提供基于RT1052芯片设计的Altium 4层电路板完整资料,包括详细的原理图和布局文件,适用于嵌入式系统开发学习与实践。 RT1052 Altium 4层板原理图+PCB已经设计完成并打样测试过,这是一款核心板。
  • Altium Designer PCB次功能详解
    优质
    本教程深入解析Altium Designer软件中的PCB层次化设计功能,涵盖原理图与PCB布局的设计技巧、多层板管理及高级布线策略,旨在提升电子工程师的电路板设计效率和质量。 本段落详细介绍了Altium Designer PCB各层的作用,并基于多篇文档进行了归纳整理,内容简洁明了,拥有这份资料就无需再查找类似的信息了。
  • Altium Designer的意义解析
    优质
    本文详细介绍了电子设计软件Altium Designer中各个图层面板的功能与用途,帮助读者理解如何有效地使用这些层级进行电路板的设计和开发。 机械层是定义整个PCB板的外观的重要组成部分,在讨论机械层的时候实际上是指其外形结构的设计。Protel 99 SE提供了16个内部电源及接地层供多层电路板使用,主要用于放置电源线与地线。 Altium Designer是一款强大的PCB设计软件,涉及多个层面及其特定用途以确保最终产品的完整性和功能性。以下是各层的详细解释: 1. **机械层(Mechanical Layer)**:该类型的设计用于定义整个PCB板的外形结构、尺寸及孔位等信息,并提供制造者与设计师之间交流所需的信息渠道。Altium Designer提供了多达16个机械层面,可根据具体需求设置不同的属性。 2. **禁止布线层(Keepout Layer)**:此层确定了电路板上允许走线和元件布局的边界区域;超出该界限范围内的任何线路或元器件将被视为无效设计元素,并被排除在最终制造之外。设计师可以设定安全边际,防止电气组件及连线超过规定限制。 3. **顶层丝印(Top Overlay)与底层丝印(Bottom Overlay)**:这两层用于放置元件标识、编号以及其他相关文字信息。其中,顶层通常用来标记元器件的位置和型号;而底层面则可根据需要开启或关闭,并可能承载其他辅助性说明内容。 4. **顶层锡膏(Top Paste)及底层锡膏(Bottom Paste)**:这两个层次对应于表面贴装技术(SMT)元件的焊盘位置,用于确定这些部件在制造过程中的锡浆覆盖范围。它们分别定义了顶部和底部表面上所需施加的焊料量。 5. **顶层阻焊(Top Solder)及底层阻焊(Bottom Solder)**:这两层的作用是防止非焊接区域上锡膏积累;通常表现为绿色保护涂层,能够有效避免短路风险的发生。通过控制上下两面的不同区域,可以确保只有指定的电气连接部分被涂覆。 6. **内部电源层(Internal Plane Layer)与接地层**:这些层次专为多层电路板设计,在其中布设电力供应和地线系统以优化性能并增强抗干扰能力;Altium Designer同样提供了16个这样的层级供选择使用。 7. **信号层(Signal Layer)**:这一系列层面是PCB布局的核心,用于安排导体路径。包括顶层、底层以及中间的多个层次,在Altium Designer中最多可以达到32个级别,从而支持复杂电路的设计和隔离工作。 8. **钻孔引导(Drill Guide)与钻图层(Drill Drawing)**:这两个层面都涉及PCB制造中的打孔过程;前者指示了所有需要进行机械加工的位置点位信息,后者则提供了详细的尺寸规格说明以确保精确度要求得到满足。 9. **多层(Multi Layer)**:这一综合层次包含了所有的其他单独层级,能够全面查看和编辑整个电路板的设计情况。 理解并掌握这些层面的使用方法对于实现高效且准确的PCB设计至关重要。设计师应根据项目的具体需求合理分配各层资源,并确保信号完整性的同时避免短路等问题的发生。此外,在考虑制造工艺及后期组装要求的基础上进行优化,才能最终制作出符合功能和质量标准的产品。