本课程为西北工业大学软件学院的计算机视觉课程期末复习资料,涵盖图像处理、特征提取、目标识别等核心内容,旨在帮助学生系统掌握和应用相关知识。
计算机视觉是一门涵盖图像处理、模式识别、机器学习及计算机图形学等多个领域的综合性学科。在西北工业大学软件学院的期末复习课程中,学生需要掌握一系列核心知识点,从基础的图像形成原理到复杂的图像处理技术。
理解图像形成的机制至关重要,这包括针孔相机模型的应用——如何将三维空间转化为二维平面图像是关键所在。在此过程中涉及世界坐标系、相机坐标系和图像坐标系之间的转换关系。外部参数矩阵描述了摄像机在世界坐标中的位置与方向信息,而内部参数矩阵则包含了焦距及主点坐标的细节,用于实现从相机到图像的精确映射。
透镜特性如光圈大小和景深以及视场角也是重要的概念,它们决定了摄像头捕捉场景的能力范围及其清晰度。光圈影响着画面中的景深层次效果,而视角角度与镜头焦距相关联,从而确定了摄像机可视区域的具体尺寸。
在光照模型方面,Lambert模型及Phong模型是最基本的理论基础;前者解释了物体表面光线反射的基本原理,后者则通过引入镜面反射和环境光来增强渲染的真实感。HSV色彩空间等概念有助于理解颜色的表现形式。
相机标定是实际应用中的关键步骤之一,旨在求解内部与外部参数,并校正因镜头引起的像平面畸变问题,以提升图像的整体质量。
滤波及边缘检测则是图像处理的重要组成部分:数字图像是通过函数f(x, y)来定义的;而图像操作则包括点操作、局部区域操作以及全局操作。例如,高斯滤波用于平滑图像中的噪声干扰,中值滤波适用于去除椒盐噪音类型。同时,Prewitt算子、Sobel边缘检测算法和Roberts交叉等方法通过计算梯度及非极大抑制技术来识别出影像边界。
多尺度空间分析的概念——如高斯金字塔模型,在不同分辨率下进行图像的细致解析中发挥着重要的作用,并对边缘探测与特征提取过程提供了有力支持。
性能评估指标,例如精确率和召回率,则用于衡量检测算法的实际效能表现,确保其在实际应用场景中的可靠性和有效性。
这些知识点构成了计算机视觉的基础知识框架,对于理解和解决相关问题至关重要。因此,在期末复习过程中,学生需要深入理解并灵活运用以上理论和技术以应对考试题目。