Advertisement

基于五次多项式的智能车横向避撞模型:在预测控制下进行最小转向距离规划及路径跟踪控制的研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究构建了基于五次多项式模型的智能汽车横向避撞系统,通过预测控制实现最小转向距离规划与精准路径跟踪,提升车辆主动安全性。 基于五次多项式的智能车横向避撞模型利用MPC预测控制算法进行路径跟踪与最小转向距离规划。该模型首先根据工况计算预碰撞时间,然后确定车辆在避免碰撞情况下的最小转向距离,并通过MPC算法实现对规划路径的精确追踪。 核心关键词包括:五次多项式、智能车横向避撞模型、预碰撞时间计算、最小转向距离和MPC预测控制算法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究构建了基于五次多项式模型的智能汽车横向避撞系统,通过预测控制实现最小转向距离规划与精准路径跟踪,提升车辆主动安全性。 基于五次多项式的智能车横向避撞模型利用MPC预测控制算法进行路径跟踪与最小转向距离规划。该模型首先根据工况计算预碰撞时间,然后确定车辆在避免碰撞情况下的最小转向距离,并通过MPC算法实现对规划路径的精确追踪。 核心关键词包括:五次多项式、智能车横向避撞模型、预碰撞时间计算、最小转向距离和MPC预测控制算法。
  • 自主驾驶轨迹-、轨迹、MPC
    优质
    本文聚焦于自主驾驶车辆中的路径规划与轨迹跟踪控制技术,深入探讨了基于MPC(模型预测控制)的方法,旨在提升自动驾驶系统的安全性和效率。 为了减少道路突发事故并提高车辆通行效率,研究车辆的紧急避障技术以实现自主驾驶至关重要。基于车辆点质量模型,我们设计了非线性模型预测控制(MPC)路径规划器;同时,根据车辆动力学模型,我们也开发了线性时变MPC轨迹跟踪器。
  • 紧急障与联合,运用算法散点或函数)实现轨迹调整
    优质
    本研究探讨了在遇到障碍物时,通过结合模型预测控制和路径规划技术进行车辆紧急避障的方法,并实现了对车辆的横向和纵向运动的有效联合控制。 紧急转向避障及联合控制技术在面临突发情况时利用输入路径(离散点或路径函数)对车辆轨迹进行精确调整。横向方向上采用基于模型预测的算法来优化车辆位置;纵向则通过PID控制器调节速度,确保安全与稳定性。 相关知识包括: - 紧急转向避障和紧急避障:指在突发情况下,利用快速且有效的驾驶动作(如迅速改变行进路线)避免碰撞或障碍物。 - 横向和纵向联合控制:横向控制涉及车辆的侧向移动及方向调整;而纵向控制则关注于速度管理与加减速操作。 这两种技术结合使用,并通过Matlab 2016b和Carsim 2018软件进行仿真测试,验证其在实际驾驶环境中的适用性和有效性。
  • AES-自动紧急与主动障系统:、PID和MPC纯追
    优质
    本研究提出了一种结合五次多项式路径规划、PID及MPC算法的自动紧急转向与主动转向避障系统,通过精确的纯追踪控制实现高效安全驾驶。 在车辆行驶过程中,利用主动转向的方式躲避前方障碍物是AES(自动紧急转向)系统的核心功能之一。该系统主要通过判断安全距离,并采用多种控制算法模型来实现对车辆的精准转向控制。相关的资料包括:1、相关问题的文档分析;2、Simulink和CarSim仿真模型,其中Simulink版本为2021b,CarSim版本为2019;3、包含可转换至不同版本(例如从2018a版本转来的)的文件。所有资料均包括simulink文件和cpar文件。
  • 自动驾驶
    优质
    本研究聚焦于自动驾驶领域中的路径跟踪技术,通过开发先进的模型预测控制系统,旨在提高车辆在复杂驾驶环境下的导航精确度与安全性。 在自动驾驶技术的研究领域内,针对自动驾驶车辆路径规划的轨迹跟踪问题是一个亟待解决且需要优化的关键课题。本段落基于模型预测控制(Model Predictive Control, MPC)理论展开研究,具体探讨了以下三个方面的内容:首先,为了解决自动驾驶车辆对预定路径进行有效追踪的问题,引入传统的MPC理念,并设计了一套适用于该场景的轨迹跟踪策略;其次,在解决路径跟随过程中出现的稳定性差和适应目标速度变化能力不足等问题时,进一步提出了采用终端状态等式约束的改进型MPC方法;最后,在研究中为了提升车辆在跟随过程中的响应速度与稳定性能,提出了一种结合预测时间范围内系统输入输出收缩限制(Predictive Input and Outputs Contractive Constraint, PIOCC)的MPC轨迹跟踪控制策略。
  • 轨迹自适应MPC
    优质
    本研究提出了一种基于模型预测控制(MPC)的自适应算法,专门用于改善智能车辆在各种道路条件下的横向轨迹跟踪性能。通过实时调整参数和优化路径规划,该方法能有效应对动态环境变化,确保行车安全与稳定性。 在当今科技迅速发展的时代背景下,自动驾驶技术已经成为研究热点与市场关注的焦点。其中,在车辆自主驾驶系统中的轨迹跟踪控制环节扮演着至关重要的角色。通过智能地操控汽车转向系统,使车辆能够按照预设路径行驶是其主要任务之一。 为了提高这一过程的精确性和适应性,研究人员引入了一种先进的自适应模型预测控制(Adaptive Model Predictive Control, AMPC)策略,并在横向轨迹跟踪方面取得了显著成果。AMPC是对传统模型预测控制(MPC)的一种扩展和改进,它结合了MPC处理复杂约束及多目标优化的强大能力,同时融入了自适应控制系统中参数估计的优势。 具体而言,在自动驾驶汽车的横向路径追踪任务中,传统的MPC通过构建车辆动力学模型来预测未来一段时间内的行驶行为,并基于这些预测结果计算出最优控制策略以确保车辆尽可能准确地沿着预设轨迹行进。然而,由于实际驾驶过程中可能遇到多种不可预见的因素(如道路条件变化、速度差异和负载变动等),这可能导致实际的汽车动态特性与模型预测之间出现偏差,从而影响到路径追踪的效果。 AMPC通过在线实时调整模型参数以适应这些变化,并有效减少因模型误差导致的跟踪错误。因此,在复杂多变的道路环境中,智能车辆依然能够保持较高的轨迹跟随精度和稳定性,这对于提高自动驾驶系统的整体性能至关重要。 在仿真测试中,自适应MPC的应用效果得到了充分验证。通过对不同驾驶场景(如静态与动态环境)进行对比分析,可以看出AMPC相较于传统控制策略明显减少了跟踪误差、提高了路径追踪的精确度和稳定性。例如,在应对急转弯或突发障碍物避让等紧急情况时,AMPC能够迅速调整控制策略以确保车辆沿着最优路径且最小化偏差完成横向轨迹追踪任务。 然而,要将自适应MPC更好地应用到实际自动驾驶系统中仍面临一些技术挑战。首先,由于在线计算量较大,需要算法具备更高的实时性,并对计算资源提出更高要求;其次,在保证控制系统鲁棒性的前提下,必须充分考虑可能存在的模型误差及外部干扰的影响。 综上所述,自适应模型预测控制(AMPC)在自动驾驶汽车横向轨迹追踪中的应用展现出强大的能力和广阔的应用前景。通过动态调整参数以适应变化条件,该技术显著提升了自动驾驶系统的灵活性和精确度,并为实现智能车辆精准可靠的路径跟踪提供了重要的技术支持。随着研究的不断深入和技术的进步,预计自适应MPC将在未来自动驾驶领域发挥更加关键的作用,推动这项技术进一步发展与普及。
  • -MATLAB源码.zip
    优质
    本资源包含基于MATLAB的智能小车路径规划与控制系统代码,适用于学术研究和项目开发。内含多种算法实现,助力于无人车导航技术的学习与应用。 智能小车路径规划是自动化与机器人领域中的一个重要研究方向。其主要目标在于设计一套算法使小车能够在复杂环境中高效且安全地找到从起点到终点的最佳路径。本段落着重探讨利用MATLAB进行智能小车的路径规划及控制的研究,该平台因其强大的数学计算能力和丰富的工具箱而成为此类研究的理想选择。 1. **基础理论**: - 图论与最短路径算法:路径规划问题通常可以转化为图论中的最小代价路径搜索问题。常用的算法包括Dijkstra和A*。 - 环境建模:为了进行有效的路径搜索,需要对工作区域进行抽象建模,如栅格地图或有向图等。 - 运动学模型:了解小车的运动特性(例如转向半径、速度限制)是规划可行路径的基础。 2. **MATLAB应用**: - MATLAB图形界面设计:创建GUI用于展示地图、规划路径及显示车辆状态信息。 - MATLAB编程实现:使用Dijkstra和A*算法进行路径规划,同时为小车控制策略编写代码。 - Simulink仿真:利用Simulink模拟不同环境下的行驶行为。 3. **路径规划算法**: - Dijkstra算法:一种基于贪心策略的全局最短路径搜索方法,适用于无权图。 - A*算法:在Dijkstra的基础上引入启发式函数以加快近似最优解的寻找过程,适合带权重的图应用。 4. **控制策略**: - PID控制器:通过比例、积分和微分项调整车辆的速度与方向是最常用的方法之一。 - 滑模控制:一种非线性方法,具有良好的抗扰动能力和鲁棒性能。 - 模糊逻辑控制:利用模糊推理进行决策制定,适用于处理不确定性及非线性问题。 5. **实验与仿真**: - 虚拟环境构建:在MATLAB中创建虚拟场景以模拟小车行驶,并验证路径规划和控制算法的有效性。 - 结果分析:评估不同条件下的车辆行驶轨迹,包括路径长度、时间消耗以及稳定性等性能指标。 6. **挑战及未来研究方向**: - 实时响应能力:如何快速进行路径规划并提供实时反馈以适应有限的计算资源需求; - 避障策略优化:在动态环境中及时应对障碍物变化,改进行驶路线。 - 多智能体协作控制:当多辆小车同时运行时,需要协调它们之间的路径避免冲突。 本项目涵盖了从理论基础到实际应用的全过程,包括路径规划的基本原理、MATLAB编程技巧、控制策略以及仿真技术等内容。它对于理解和掌握智能小车导航系统具有重要的价值,并为未来的机器人开发提供必要的理论支持和技术储备。
  • UUV方法.pdf
    优质
    本论文深入探讨了无人无缆水下航行器(UUV)路径跟踪控制中的模型预测控制策略,提出了一种新颖的方法来优化其导航性能。该研究旨在提高UUV在复杂海洋环境下的自主性和适应性。 本段落研究了基于模型预测控制的水下无人航行器(UUV)路径跟踪控制技术。该技术是实现UUV多种军用及民用用途的重要基础。针对UUV在路径跟踪过程中存在的欠驱动、非完整约束以及系统非线性等问题,采用了一种基于非线性连续模型预测控制算法来设计垂直面路径跟踪控制器。 研究首先建立了垂直面运动的数学模型,并在此基础上给出了相应的状态空间预测模型。通过设定性能指标并利用泰勒级数展开和李导数的方法求解出最优控制律,在欠驱动条件下实现了对UUV的有效路径跟踪控制。最后,通过仿真实验验证了所设计控制器在垂直面上路径追踪中的有效性。
  • LQR应用
    优质
    本研究探讨了线性二次型调节器(LQR)技术在智能车辆路径跟踪控制系统中的应用效果与优化策略,以实现更加精确和平稳的自动驾驶。 路径跟踪问题是智能车辆研究中的关键技术之一,其核心在于开发一种有效的控制算法来使车辆能够精确地遵循预先规划的路线。本段落主要探讨了线性二次型最优控制(LQR)在智能车路径跟踪应用方面的具体实现,包括建立智能车辆模型、算法的实际运用以及选择不同工况下的路径处理过程,并且分析了 LQR 控制方法在此领域内的优势与局限性。
  • 自动驾驶汽局部
    优质
    本研究聚焦于自动驾驶技术中的局部避障路径规划与跟踪控制系统设计,旨在提升车辆在复杂环境下的自主导航能力和安全性。通过优化算法和实时感知技术的应用,实现高效、安全的动态障碍物规避策略。研究成果对于推进无人驾驶汽车的实际应用具有重要意义。 采用分层控制架构搭建局部避障路径规划与跟踪控制系统模型。上层为避障路径规划层,基于人工势场(APF)和模型预测控制(MPC)算法设计了两种避障路径规划器。在设计APF避障路径规划器时,在斥力场上引入了车辆与目标点的距离因子,并增设虚拟子目标点,建立了道路边界斥力势场;而在设计MPC避障路径规划器时,则对目标函数中的避障功能进行了优化改进。 下层为跟踪控制层,基于MPC算法设计了路径跟踪控制器。通过CarSim和Simulink联合仿真模型,在30km/h、60km/h及90km/h的不同车速条件下,测试车辆沿双移线参考路径的跟踪性能,并进行仿真实验验证。 将前面两种规划器分别与跟踪控制器结合后搭建了两个集成控制系统模型并进行了相应的仿真。采用效果更佳的双层MPC控制模型完成了直线避障实车试验。结果显示:试验车辆成功避开障碍物,最大方向盘转角绝对值为188.2°,横摆角速度的最大绝对值为9.411°/s,均在合理范围内;这表明所设计的双层MPC控制系统具有良好的路径规划和跟踪效果,并且行驶过程符合稳定性需求。 ### 自动驾驶汽车局部避障路径规划与跟踪控制研究 #### 一、研究背景及意义 随着科技的进步和社会发展的需要,自动驾驶技术已成为汽车行业的重要发展方向之一。其中,局部避障路径规划和跟踪控制作为关键技术环节,在提高车辆的安全性和可靠性方面发挥着重要作用。通过高效准确的路径规划以及精准可靠的路径跟踪控制策略,可以确保在遇到障碍物时迅速作出反应并选择安全路线规避风险,从而保障乘客的生命财产安全。 #### 二、国内外研究现状 ##### 2.1 局部路径规划的研究进展 近年来,在局部避障路径规划领域内积累了大量的研究成果。主要方法包括基于人工势场(APF)和模型预测控制(MPC)。其中,APF通过吸引势场引导车辆向目标点移动,并利用斥力势场避免障碍物;而MPC则通过对未来状态的预测来实现最优路线的选择。 ##### 2.2 路径跟踪控制的研究进展 路径跟踪技术也得到了广泛关注。目前,基于MPC的方法因其良好的实时性和鲁棒性被广泛应用,在动态调整车辆参数以精确跟随预定轨迹方面表现出色。 #### 三、研究内容概述 本项目采用分层架构设计了一个局部避障路径规划与跟踪控制系统模型: 1. **上层:避障路径规划层** - 设计了改进型APF和MPC两种路径规划器。对APF的修改包括引入距离因子以及增设虚拟目标点,同时建立了道路边界斥力势场;而在优化MPC时,则着重于提升其避开障碍物的能力。 2. **下层:跟踪控制层** - 基于MPC算法开发了路径跟随控制器以确保车辆能够精确地遵循由上一层规划出的路线。 #### 四、实验验证 为了检验所提出方法的有效性,研究团队在不同速度条件下进行了仿真实验,并测试了车辆对双移线参考轨迹的跟踪能力。结果表明,在所有测试车速下,汽车均能稳定且准确地跟随预定路径行驶。 此外还实施了一项实车试验来评估上述控制策略的实际性能表现:使用改进后的MPC模型完成直线避障任务后发现,实验用车成功绕过了障碍物,并在最大方向盘转角和横摆角度方面都保持了合理的数值范围;这证明所设计的双层控制系统具备良好的路径规划与跟踪效果以及行驶稳定性。 #### 五、结论 本研究提出了一种基于分层控制架构的局部避障路径规划及跟踪系统模型。通过对APF和MPC算法进行改进,显著提高了其在复杂环境中的适应性和安全性;同时,利用MPC方法实现了高精度的轨迹跟随效果。通过仿真实验与实地测试验证了该方案的有效性,并为推动自动驾驶技术的发展提供了有力支持。 #### 六、展望 尽管取得了阶段性成果,但自动驾驶领域仍面临诸多挑战。未来研究可从以下几方面着手: 1. **环境感知能力提升**:进一步改进传感器配置和技术以提高复杂场景下的识别精度。 2. **多车协同避障策略开发**:探索建立车辆间协作机制来实现更高效的障碍物规避路径规划。 3. **极端条件适应性增强**:深入研究恶劣天气和特殊路况对系统性能的影响,提升整体鲁棒性和可靠性。 通过持续的技术创新与优化改进,自动驾驶技术将更加成熟可靠,并为人们的出行带来更多便利与安全保障。