Advertisement

ANSYS WORKBENCH的设计、仿真与优化

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《ANSYS WORKBENCH的设计、仿真与优化》一书全面介绍了如何利用ANSYS Workbench进行产品设计、模拟分析及性能优化,旨在帮助工程师和设计师提高工作效率并实现创新。 ANSYS与WORKBENCH结合的设计、仿真与优化技术,包含光盘资料。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ANSYS WORKBENCH仿
    优质
    《ANSYS WORKBENCH的设计、仿真与优化》一书全面介绍了如何利用ANSYS Workbench进行产品设计、模拟分析及性能优化,旨在帮助工程师和设计师提高工作效率并实现创新。 ANSYS与WORKBENCH结合的设计、仿真与优化技术,包含光盘资料。
  • ANSYS Workbench 指南 PDF.txt
    优质
    《ANSYS Workbench 优化设计指南》是一本PDF格式的专业教程书籍,详细介绍了如何利用ANSYS Workbench进行高效的产品设计和结构优化。 ANSYS Workbench Environment (AWE) 是新一代多物理场协同CAE仿真环境,其独特的产品架构和众多支撑性产品模块为产品整机及多场耦合分析提供了优秀的系统级解决方案。它包含的主要模块有几何建模模块(Design Modeler)、有限元分析模块(Design Simulation)和优化设计模块(Design Xplorer),这些模块将设计、仿真与优化集成于一体,方便设计人员在不同功能模块间进行双向参数互动调用,并使相关的人力资源、部门和技术数据在同一环境中实现有效整合。AWE具有以下主要特色:
  • 基于ANSYS Workbench某轮毂结构
    优质
    本研究利用ANSYS Workbench软件对特定型号轮毂进行结构优化设计,旨在提高其强度与刚度的同时减轻重量,采用拓扑优化等方法探索最优设计方案。 为了实现机械零件的轻量化设计,在Ansys Workbench软件的支持下,本段落以轮毂的实际结构为依据进行了优化研究。首先利用AWE环境中的Design Modeler模块进行三维建模,并将关键尺寸参数化,以便后续优化分析。 文中指出支重轮在履带式车辆中的重要作用及其对整车性能的影响。传统的设计方法往往耗时且成本高昂,而使用Ansys Workbench则可以显著减少研发时间和费用。作者选择了直接利用Design Modeler模块进行建模的方法,并简化了模型以忽略次要因素,从而更专注于主要结构参数。 完成初步建模后,通过分配材料属性(如LC4铝合金的特性),进行了有限元分析和静态应力分析,得到包含64,486个单元和119,314个节点的网格模型。优化设计的关键在于确定影响性能的核心尺寸变量,并利用Ansys Workbench中的优化功能寻找最优组合方案。 最终结果表明,在保证结构刚度与强度的前提下,轮毂重量减少了10.8%,实现了轻量化目标。本研究强调了参数化建模、有限元分析和优化计算在机械设计中的重要性,为追求高性能和轻量化的部件提供了参考方法。
  • ANSYS Workbench 案例分析
    优质
    本课程深入解析利用ANSYS Workbench进行结构优化的设计流程与技巧,涵盖理论基础、实例操作及常见问题解答。适合工程设计人员和科研工作者学习提升。 本段落主要介绍ANSYS Workbench中的优化模块,并对结构优化等内容进行了详细的示范。
  • 利用Ansys Workbench进行固定支架
    优质
    本项目采用Ansys Workbench软件对固定支架进行结构优化设计,旨在通过有限元分析(FEA)方法提高其强度和刚度,减少材料消耗并降低成本。 本段落主要介绍如何使用Ansys Workbench软件对固定支架进行优化设计,并详细阐述了具体的优化方法与步骤。在工业领域内,固定支架的应用十分广泛,其设计质量直接关系到设备的性能及安全性。 作为一款强大的仿真分析工具,Ansys Workbench具备集成度高、易于操作和结果准确等特点,在工程仿真领域得到广泛应用。本段落主要采用形状优化设计和目标驱动优化方法进行研究。 形状优化设计是通过改变固定支架几何结构来达到质量减轻的目的。文中提到的案例中,该技术使得固定支架的质量降低了23.8%。 相比之下,目标驱动优化则基于特定的目标函数,在满足使用条件的前提下调整设计变量以实现最优值。在本段落的研究中,则用于确保固定的力和应变等需求被满足。 文章详细描述了Ansys Workbench进行优化设计的过程:首先建立模型并划分网格;其次根据实际应用环境设定优化目标与约束条件;之后选择合适的形状或目标驱动方法执行计算,随后分析结果并对模型做出调整以达到最优解。文中还列出了具体的参数设置范围(例如ds_h的40mm至170mm、ds_b的5mm至40mm以及ds_l的80mm到280mm)来影响优化效果。 此外,本段落也介绍了其他一些用于分析模型应力分布和变形情况的有效工具,如ShapeFinder、TotalDeformation及Equivalent(von-Mises)Stress等。这些辅助软件能够帮助更好地理解设计并进行合理调整。 综上所述,利用Ansys Workbench对固定支架实施优化设计不仅能有效降低质量、提升性能与安全性,并且还能提高工作效率和缩短研发周期,在实际应用中具有重要价值。
  • ANSYS Workbench 电磁仿分析
    优质
    本课程深入介绍ANSYS Workbench在电磁场仿真领域的应用,涵盖从基础理论到高级技术的内容,帮助学员掌握利用该软件进行复杂电磁问题求解的能力。 ANSYS Workbench 在电磁方面的仿真实例展示了该软件在分析复杂电磁问题中的强大功能。通过使用 ANSYS Workbench 的相关模块,工程师能够对各种电气设备进行详细的电磁场模拟与优化设计,从而确保产品的高性能及可靠性。这些案例涵盖了从电机到天线的广泛应用领域,并为用户提供了一个直观且高效的工具来探索和解决实际工程挑战。
  • ANSYS Workbench 动力学仿分析
    优质
    本课程深入讲解ANSYS Workbench软件在动力学仿真中的应用,涵盖跌落、碰撞等场景模拟,助您掌握结构响应与损伤分析技巧。 ### ANSYS Workbench 动力学分析 #### 明晰动力学分析指南概览 在进行ANSYS Workbench的动力学分析时,首先需要了解整体的工作流程和技术要点。此部分概述了动力学分析的基本流程,帮助用户熟悉整个分析过程。 #### 明晰动力学工作流程 ##### 引言 在开始任何动力学分析之前,理解基本概念和工作流程至关重要。这有助于确保分析的准确性和有效性。 ##### 创建分析系统 创建分析系统是进行动力学分析的第一步。这包括定义分析类型、设置单元大小和其他初始参数。 ##### 定义工程数据 定义工程数据涉及材料属性、密度等关键信息的输入,这些数据对于准确模拟结构的行为至关重要。 ##### 附加几何体 将CAD模型导入到ANSYS Workbench中,并对模型进行必要的修改或简化,以便更好地适应动力学分析的需求。 ##### 定义部件行为 根据所研究问题的具体情况,需要为不同的部件定义特定的行为,如弹性、塑性等特性。 ##### 定义连接 在动力学分析中,正确定义部件间的连接对于模拟真实情况至关重要。 ###### 点焊在明晰动力学分析中的应用 点焊是一种常见的连接方式,在进行动力学分析时,需要准确地模拟这些点焊的效果。 ###### 部件间交互作用 在明晰动力学分析中,部件之间的相互作用是非常重要的一个方面,包括接触检测、公式化处理、壳厚度因子等。 ####### 接触检测 接触检测是指识别模型中可能发生接触的区域,这对于预测部件间的碰撞非常重要。 ####### 公式化处理 选择合适的接触公式化方法可以帮助更精确地模拟接触行为。 ####### 壳厚度因子与节点壳厚度 在处理薄壳结构时,正确设定壳厚度因子和节点壳厚度可以提高模拟精度。 ####### 部件自接触 部件自接触是指同一部件内部不同部分之间的接触,需要通过特殊设置来避免或模拟这种接触。 ####### 单元自接触 单元自接触指的是单个单元内不同部分之间的接触,这在复杂形状分析中尤为重要。 ####### 容差 容差设定用于确定接触检测的精度级别。 ####### 撞球因子 撞球因子用来控制模型中的接触行为,尤其是在高速碰撞情况下。 ####### 时间步长安全因子 时间步长安全因子是动力学分析中的一个重要参数,它直接影响模拟结果的稳定性。 ####### 限制时间步长速度 限制时间步长速度可以防止模拟过程中出现不稳定现象。 ####### 边缘对边缘接触 边缘对边缘接触是动力学分析中的一个特殊案例,需要特别注意其模拟方式。 ###### 交互类型属性 针对不同的交互类型(如无摩擦、有摩擦、粘合和增强),需要设置相应的属性来模拟其行为。 ##### 设置对称性 对称性设置能够显著减少计算时间和资源消耗,特别是在对称结构的分析中。 ###### 明晰动力学对称性 对称性设置对于明晰动力学分析来说非常有用,可以提高计算效率。 ###### 通用对称性 通用对称性适用于大多数结构分析,可以通过设置对称平面来简化模型。 ###### 全局对称平面 全局对称平面的定义可以帮助减少计算量,同时保持分析的准确性。 ##### 定义远程点 在动力学分析中,远程点的定义和设置对于模拟外部边界条件非常重要。 ##### 应用网格控制预览网格 合理的网格划分对于获得准确的动力学分析结果至关重要,需要根据模型特性和需求进行调整。 ##### 建立分析设置 分析设置包括多个方面,如时间步长控制、求解器设置、欧拉域控制等,这些都是确保分析结果准确性的关键因素。 ##### 定义初始条件 初始条件的定义对于模拟动态响应非常重要,包括初速度、初始应变等。 ##### 施加载荷和支持 在动力学分析中,正确施加载荷和支持条件是模拟真实情况的基础。 ##### 解算 解算是整个动力学分析过程的最后一环,通过求解器执行模拟并获取结果。 ANYS Workbench 动力学分析涵盖了从模型准备到结果解释的整个流程,每一步都至关重要。通过仔细定义每个步骤,用户可以确保获得高质量的模拟结果,从而支持设计优化和验证等工作。
  • Workbench教程
    优质
    本教程详细介绍了如何使用Workbench进行设计优化,涵盖从基础操作到高级技巧的各项内容,帮助用户快速掌握软件功能。 Workbench是ANSYS公司提出的一种协同仿真环境,旨在解决企业产品研发过程中CAE软件的异构问题。面对制造业信息化的大潮、众多仿真软件带来的挑战以及保护企业智力资产的需求,ANSYS公司的观点是在保持核心技术多样化的同时,建立一个协同仿真的工作环境。
  • ANSYS Workbench 多目标实例详解.txt
    优质
    该文档深入讲解了如何使用ANSYS Workbench进行多目标优化设计,通过具体案例详细介绍了操作步骤与技巧,适合工程师和研究人员参考学习。 本段落提供了一个关于ANSYS Workbench多目标优化的详细实例教程,包含基础且详细的步骤讲解,使读者能够轻松掌握多目标优化的具体操作方法。
  • ANSYS Workbench 电磁场仿实例详解.pdf
    优质
    本书《ANSYS Workbench 电磁场仿真实例详解》通过详实的案例解析了如何使用ANSYS Workbench进行电磁场仿真,旨在帮助读者掌握该软件在电磁学领域的应用技巧。 ANSYS Workbench电磁场仿真的一个完整例子可以帮助用户理解如何在该软件环境中进行复杂的电磁仿真工作。通过这个实例,可以学习到从模型建立、参数设置直到结果分析的全过程,从而掌握使用Workbench进行电磁设计的有效方法和技巧。这样的教程对于初学者来说非常有帮助,因为它不仅提供了理论指导还包含了实际操作步骤。