Advertisement

操作系统中的进程控制实验报告.doc

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本实验报告针对操作系统中进程控制机制进行了深入研究与实践,通过理论分析和代码实现相结合的方式,探讨了进程创建、同步及通信等关键技术。 本段落介绍了一份操作系统进程控制实验报告。该实验在配备Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz处理器及4.00GB内存的硬件环境下进行,使用Linux系统作为软件环境。实验旨在加深对进程并发执行概念的理解,并实践并发进程创建和控制的方法。通过观察和体验进程动态特性,进一步理解其在生命周期中的状态变化过程,掌握有效的进程控制方法以及了解父子进程间的相互作用关系。此外,该实验还提供了练习Linux系统中与进程创建及控制相关的系统调用编程技巧的机会。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .doc
    优质
    本实验报告针对操作系统中进程控制机制进行了深入研究与实践,通过理论分析和代码实现相结合的方式,探讨了进程创建、同步及通信等关键技术。 本段落介绍了一份操作系统进程控制实验报告。该实验在配备Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz处理器及4.00GB内存的硬件环境下进行,使用Linux系统作为软件环境。实验旨在加深对进程并发执行概念的理解,并实践并发进程创建和控制的方法。通过观察和体验进程动态特性,进一步理解其在生命周期中的状态变化过程,掌握有效的进程控制方法以及了解父子进程间的相互作用关系。此外,该实验还提供了练习Linux系统中与进程创建及控制相关的系统调用编程技巧的机会。
  • 原理三:.doc
    优质
    本实验报告详细探讨了《操作系统原理》课程中关于进程控制的核心内容,通过具体实验操作加深对进程创建、切换和同步等机制的理解与应用。 本段落介绍了操作系统原理实验三的进程控制报告。该实验旨在掌握进程创建方法及进程控制技术,包括睡眠、同步与撤消等内容。实验环境为一台PC机或工作站,并使用RedHat9.0操作系统进行操作。通过编程验证相关理论知识,涉及的主要系统调用是UNIX/LINUX中的fork()函数。完成此实验后,可以更好地理解进程的概念以及操作系统的原理。
  • 优质
    本实验报告详述了操作系统课程中进行的进程控制实验第二部分的内容。通过编写和测试相关程序,深入理解操作系统的进程管理和同步机制。报告涵盖了实验目的、步骤及结果分析,并探讨了所遇问题及其解决方案。 os实验二 进程控制实验报告。包括代码和实验截图。
  • .doc
    优质
    本实验报告详细记录了在计算机操作系统课程中进行的各项实验过程与结果分析,包括进程管理、内存分配及文件系统操作等内容。 本段落介绍了一个多进程题目sh1的实现,即创建一个具备多种功能的shell程序。该程序支持命令参数,例如echo arg1 arg2 arg3和ls /bin /usr/bin /home等命令。同时,它还实现了内置命令cd、pwd、exit等功能,如使用cd /bin或执行pwd来查看当前目录。实现思路是通过设置一个死循环来模仿shell终端,读取用户的输入,并根据空格将输入拆分成字符串数组,然后调用execute子函数进行处理。对于echo命令,程序会检查数组的第一个元素以确定命令类型;一旦确认为echo,则fork一个新的进程来进行执行。
  • 计算机调度.doc
    优质
    本实验报告针对计算机操作系统中的进程调度机制进行了深入探讨与实践操作,分析了多种调度算法,并通过编程实现了简单的调度模拟,以验证其在不同条件下的性能表现。 ### 计算机操作系统进程调度实验报告知识点解析 #### 一、实验背景与目标 在计算机操作系统中,进程调度是一项核心任务。无论是在批处理系统、分时系统还是实时系统中,用户进程的数量通常都会超过处理器的数量,这就会引发进程之间争夺处理器资源的问题。为了解决这一问题,操作系统必须实现一种机制,能够根据一定的策略动态地将处理器分配给就绪队列中的进程。 本实验旨在通过实践操作,使学生深入理解进程控制块(PCB)、进程队列等概念,并掌握两种基本的进程调度算法——最高优先数优先调度算法(Preemptive Priority Scheduling Algorithm)和先来先服务调度算法(First-Come First-Served Scheduling Algorithm)的具体实现方法。 #### 二、实验内容详解 ##### 1. 进程调度算法概述 - **最高优先数优先调度算法**: - **原理**:根据进程的优先级高低来进行调度,优先级高的进程优先获得处理器。 - **特点**:适合于对响应时间有严格要求的系统,如实时系统。 - **先来先服务调度算法**: - **原理**:按照进程进入就绪队列的先后顺序进行调度。 - **特点**:简单直观,适合于没有特殊要求的一般批处理系统。 ##### 2. 进程控制块(PCB)的设计 进程控制块是操作系统用来管理进程的数据结构,其中包含了用于管理和控制进程的信息。在这个实验中,每个进程都有一个进程控制块,其中包括以下信息: - **进程名**:标识进程的名称。 - **优先数**:表示进程的优先级。 - **到达时间**:进程进入系统的时刻。 - **需要运行时间**:进程完成所需的时间。 - **已用 CPU 时间**:进程已经使用的处理器时间。 - **进程状态**:进程当前的状态,包括就绪(Wait)、运行(Run)和完成(Finish)。 ##### 3. 实验具体步骤 - **初始化**:需要创建一系列的进程,并初始化其PCB中的各项属性。 - **调度过程**: - 选择最高优先数的进程进行调度。 - 如果进程在运行一个时间片后仍未完成,则将其优先数减1,并重新放入就绪队列。 - 如果进程完成,则将其状态设置为完成,并从就绪队列中移除。 - 每次调度后打印当前运行的进程、就绪队列以及各进程的PCB信息,便于检查和调试。 - **循环调度**:重复上述过程,直到所有进程均完成。 ##### 4. 实验代码分析 代码片段展示了如何定义进程控制块(PCB)结构体,并实现进程控制块的创建和排序功能。 - **进程控制块(PCB)结构体定义**: ```c struct pcb { char name[10]; // 进程名 char state; // 进程状态 int super; // 优先数 int ntime; // 需要运行时间 int rtime; // 已用 CPU 时间 struct pcb* link;// 指向下一个进程控制块的指针 } *ready = NULL, *p; ``` - **建立进程控制块函数(input)**:该函数用于输入并创建进程控制块。 ```c char input() { ... (省略代码) printf(请输入被调度的进程数目:); scanf(%d,&num); ... (省略代码) } ``` - **建立对进程进行优先级排列函数(sort)**:该函数实现了进程控制块根据优先数进行排序的功能。 ```c char sort() { PCB *first, *second; int insert=0; ... (省略代码) } ``` #### 三、总结 通过本次实验,不仅可以帮助学生理解进程调度的基本原理和实现方法,还能加深对进程控制块(PCB)、进程队列等关键概念的认识。此外,通过编写和调试具体的进程调度程序,学生能够亲身体验优先级和先来先服务调度算法的实际应用,从而更好地掌握操作系统进程管理的相关知识和技术。
  • 调度模拟.doc
    优质
    本实验报告详细分析并实现了多种经典的操作系统进程调度算法,并通过模拟实验评估了它们在不同场景下的性能表现。 编写一个进程调度程序,允许多个进程并发运行。该调度程序采用最高优先数优先的调度算法和先来先服务调度算法。每个进程由一个进程控制块(PCB)表示,其状态可以是就绪W、运行R或完成F三种之一。
  • 调度
    优质
    本实验报告针对《操作系统》课程中的进程调度部分进行详细研究和实践探索,分析了多种常见调度算法,并通过编程实现及性能测试,加深了对进程调度机制的理解。 一、 目的要求 通过使用高级语言编写并调试一个进程调度程序来加深对进程概念及各种进程调度算法的理解。 二、 实习题 设计并实现一个模拟的进程调度程序,采用“轮转法”(Round Robin, RR)进行五个进程的调度。该方法可以是简单轮转法、可变时间片轮转法或多个队列中的轮转法。在简单轮转算法中,所有就绪状态下的进程按照先来先服务的原则形成一个单向链表;处理机资源始终分配给链首的第一个进程使用,并且每个进程占用的时间长度是固定的。一旦某个正在运行的进程用完其预定时间片而未能完成,则该进程会被重新排回到队列尾部,等待下一轮次的调度执行直至所有任务结束。 三、 编程思想 采用结构体(struct)来表示程序中的每一个独立进程,并通过指针将这些单个实体组合成一个循环链表。每当遇到一个需要处理的任务时,系统会检查该进程中剩余的工作量是否已经全部完成;如果确定了这一点,则从当前的循环列表中移除对应的节点并继续对下一个可用任务进行调度操作直至所有工作项都已处理完毕。 四、 程序数据结构 ```c struct pcb { char name[10]; /* 进程名 */ char state; /* 进程状态 */ int ntime; /* 完成进程所需时间 */ int rtime; /* 已占用CPU时间 */ struct pcb *link; /* 指向下一个结构体的指针 */ }; typedef struct pcb PCB; ```
  • 管理
    优质
    本实验报告深入探讨了操作系统中的进程管理机制,通过理论与实践结合的方式,详细分析了进程创建、调度及同步等关键操作,并提出优化建议。 进程的软中断通信可以通过信号处理来实现。下面是一个示例代码: ```c #include #include #include #include int wait_flag; void stop() { wait_flag = 0; } int main( ) { int pid1, pid2; // 定义两个进程号变量 signal(SIGINT,stop); // 或者可以使用信号SIGTERM来处理终止请求 while((pid1 = fork()) == -1); if(pid1 > 0) { // 子进程创建成功,pid1为父进程的子进程标识符 while((pid2 = fork( )) == -1); if(pid2 > 0) { wait_flag = 1; kill(pid1, SIGUSR1); // 发送信号给第一个子进程以终止它 kill(pid2, SIGUSR2); // 同样发送第二个子进程的终止信号 wait(0); wait(0); printf(\nParent process is killed !!\n); exit(0); } else { wait_flag = 1; signal(SIGUSR2, stop); printf(\nChild process 2 is killed by parent !!\n); exit(0); } } else { wait_flag = 1; signal(SIGUSR1,stop); printf(\nChild process 1 is killed by parent !!\n); exit(0); } } ``` 进程的管道通信可以通过创建一个共享内存区域(即管道)来实现,下面是一个示例代码: ```c #include #include #include int pid1, pid2; // 定义两个进程变量 int main( ) { int fd[2]; char OutPipe[100], InPipe[100]; pipe(fd); while((pid1 = fork()) == -1); if(pid1 == 0) { lockf(fd[1], 1, 0); sprintf(OutPipe,\nChild process 1 is sending message!\n); write(fd[1], OutPipe, sizeof(OutPipe)); sleep(5); lockf(fd[1], 0, 0); exit(0); } else { while((pid2 = fork()) == -1); if(pid2 == 0) { lockf(fd[1], 1, 0); sprintf(OutPipe,\nChild process 2 is sending message!\n); write(fd[1], OutPipe, sizeof(OutPipe)); sleep(5); lockf(fd[1], 0, 0); exit(0); } else { wait(NULL); read(fd[0], InPipe, sizeof(InPipe)); printf(%s\n,InPipe); wait(NULL); read(fd[0], InPipe, sizeof(InPipe)); printf(%s\n,InPipe); exit(0); } } } ``` 这两个示例分别展示了如何通过信号和管道实现进程间的通信。
  • 调度
    优质
    本实验报告详细探讨了在操作系统中的进程调度机制,并通过具体实验分析了几种典型调度算法的实际性能表现。 设计一个模拟调度程序来同时执行五个进程,并且每个进程通过一个PCB(进程控制块)表示。此模拟调度程序可以实现两种任意选择的调度算法之一,在有能力的情况下,也可以实现两个调度算法。在运行过程中,屏幕上应显示各进程的状态变化,以便观察整个调度过程。
  • Linux
    优质
    本实验报告详细探讨了在Linux环境下进行进程管理的各项操作,包括进程创建、调度与同步等内容,旨在加深读者对Linux系统内核机制的理解。 计算机操作系统教程第二版以及操作系统Linux进程实验报告的内容可以被重新表述如下: 关于学习资源,《计算机操作系统教程》的第二版是一个很好的选择;同时,在进行实际操作练习的时候,撰写一份详尽的操作系统Linux进程相关的实验报告也是非常有帮助的。 这样重写后保留了原文的核心信息,并且去除了不必要的链接和联系方式。