Advertisement

用C语言实现贪心算法的装箱问题

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章介绍如何使用C语言编写解决经典的“装箱问题”的贪心算法程序。通过优化物品放置策略以达到最少使用箱子数的目的,提供源代码与分析。 本段落主要介绍了用C语言实现贪心算法中的装箱问题,需要的朋友可以参考。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C
    优质
    本文章介绍如何使用C语言编写解决经典的“装箱问题”的贪心算法程序。通过优化物品放置策略以达到最少使用箱子数的目的,提供源代码与分析。 本段落主要介绍了用C语言实现贪心算法中的装箱问题,需要的朋友可以参考。
  • 解决C
    优质
    本篇文章探讨了如何在C语言编程环境中运用贪心算法来高效地解决经典的装箱问题。通过具体实例分析,文章详细阐述了该策略的设计思路及其应用步骤,为读者提供了理论与实践相结合的学习指南。 本段落介绍了使用C语言基于贪心算法解决装箱问题的方法。装箱问题是经典的组合优化问题之一,目标是将物品分配到箱子中以使使用的箱子数量最少。通过在每一步选择当前最优解来实现全局最优解的贪心算法被广泛应用于此类问题。 首先,在文中我们定义了一些数据结构用于存储有关箱子和货物的信息: ```c typedef struct{ int gno; int gv; }Goods; typedef struct node{ int gno; struct node *link; }GNode; typedef struct node1{ int remainder; GNode * head; struct node1 * next; }GBox; ``` 接着,为了在装箱时按照体积从大到小的顺序排列物品,我们使用冒泡排序算法对货物进行排序: ```c void GoodsSort(Goods goods[], int n){ int i, j; Goods t; for (i = 0; igno = goods[i].gno; pg->link = NULL; if (!hbox){ hbox = (GBox *)malloc(sizeof(GBox)); hbox->remainder = 10; hbox->head = NULL; hbox->next = NULL; } qb=pb=hbox; while (pb){ if (pb->remainder >= goods[i].gv) break; else { qb = pb; pb = pb->next; } } if (!pb){ pb=(GBox *)malloc(sizeof(GBox)); pb->head=NULL; pb->next=NULL; pb->remainder=10; qb->next=pb; } ... } ``` 通过上述步骤,我们可以利用贪心算法有效地解决装箱问题,并尽量减少使用的箱子数量。
  • C解决背包
    优质
    本项目采用C语言编写,通过贪心算法高效地解决经典背包问题。程序设计简洁而巧妙,展示了贪婪策略在资源优化配置中的应用价值。 课程的随堂作业是用C语言写的,在Dev环境下可以运行。这是给编程新手准备的代码示例,希望不想动手写作业的朋友能方便一些。毕竟老师也不会仔细检查的。
  • 背包C
    优质
    本篇文章介绍了一种使用C语言实现的解决背包问题的贪心算法。通过分析不同物品的价值与重量比,以达到价值最大化的目标。适合初学者学习理解和实践应用。 贪心算法解决背包问题的C语言代码是绝对无误并且可以成功运行的。
  • 背包(C)
    优质
    本文探讨了使用C语言实现解决背包问题的贪心算法。通过分析不同物品的价值与重量比,力求在限定容量内获取最大价值,展示了具体的代码实现和优化思路。 与0-1背包问题类似,区别在于选择物品i装入背包时可以选择只取其一部分而非全部,其中1≤i≤n。
  • C解决骑士游历
    优质
    本项目采用C语言编程,运用贪心算法解决经典的“骑士游历”棋盘覆盖问题。通过优化路径选择策略,探索国际象棋中马(骑士)在棋盘上遍访每一个格子的最短路径方案。 使用C语言解决骑士游历问题的算法是贪心算法。该方法涉及较多全局变量。后续会在博客中详细阐述思路。标题拟定为:《骑士游历问题(C语言代码)》。
  • 验二:研究
    优质
    本实验聚焦于经典的优化问题——装箱问题,通过设计与实现多种贪心策略,旨在探索高效解决该问题的方法,分析不同算法的实际性能。 实验2涉及装箱问题的贪心算法研究。本次实验的目标是通过使用贪心策略来解决经典的装箱问题,即如何有效地将不同大小的对象放入有限数量的箱子中,使得使用的箱子总数最少或剩余空间最小化。在进行这一部分的研究和实现时,重点在于设计合理的评估函数以及确定每次决策的最佳策略,以期达到全局最优解或是接近最优解的结果。 实验过程中会分析不同的贪心选择准则对最终解决方案的影响,并通过实例验证这些算法的有效性与局限性。此外,在具体实施阶段还需要考虑边界条件处理、异常情况的应对策略等问题,从而确保所设计的程序具有较高的鲁棒性和实用性。
  • 源代码
    优质
    本段代码实现了解决经典装箱问题的贪心算法,旨在以最少的箱子数量或最小的空间浪费来装载一系列物品。适合初学者学习和参考。 我们需要将一些物品装入箱子,并考虑如何优化装箱方案。在进行装箱操作时,我们应该遵循一定的准则来确保效率和合理性。
  • C解决背包
    优质
    简介:本文探讨了使用C语言实现求解背包问题的贪心算法。通过优先选择单位重量价值最高的物品,实现了资源的有效利用和优化配置。 问题描述: 有一个容量为150的背包以及7个可以分割成任意大小的物品。目标是尽可能让装入背包中的物品总价值最大,但不能超过总容量。 给定的数据如下: - 物品:A B C D E F G - 重量:35 30 60 50 40 10 25 - 价值:10 40 30 50 35 40 30 算法描述: 贪心算法是指,在解决问题时,总是选择当前看来最优的选项。也就是说,不考虑整体的最佳解决方案,而是做出局部最佳的选择。 问题分析: 目标是找到一个策略使得装入背包中的物品总价值最大,并且这些物品的重量之和不超过150。 具体来说, - 目标函数:求∑pi的最大值(其中pi表示每个被选中物品的价值); - 约束条件:∑wi<=M,即所有选择的物品的总重量不能超过背包容量150; - 贪心策略:优先选取单位重量价值最大的物品。