Advertisement

孤岛微电网的分布式固定时间二次协同控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究聚焦于孤岛微电网中电源与负载间的高效管理,提出了一种创新性的分布式固定时间二次协同控制策略,旨在优化能源分配,确保系统稳定运行。 孤岛微电网采用下垂控制策略会导致系统稳态频率和电压偏离额定值。为此,提出了一种分布式固定时间二次协调控制策略来恢复系统的频率和电压,并实现期望的有功功率分配。该方法能在预定时间内完成目标而不依赖于初始状态,从而可以根据任务需求离线预设整定时间。此外,采用固定时间Lyapunov方法分析了二次协调控制系统稳定性。通过在Matlab Simulink中的仿真实验验证了分布式固定时间二次控制策略的有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于孤岛微电网中电源与负载间的高效管理,提出了一种创新性的分布式固定时间二次协同控制策略,旨在优化能源分配,确保系统稳定运行。 孤岛微电网采用下垂控制策略会导致系统稳态频率和电压偏离额定值。为此,提出了一种分布式固定时间二次协调控制策略来恢复系统的频率和电压,并实现期望的有功功率分配。该方法能在预定时间内完成目标而不依赖于初始状态,从而可以根据任务需求离线预设整定时间。此外,采用固定时间Lyapunov方法分析了二次协调控制系统稳定性。通过在Matlab Simulink中的仿真实验验证了分布式固定时间二次控制策略的有效性。
  • 基于事件触发机压和频率MATLAB仿真模型
    优质
    本研究构建了基于事件触发机制的孤岛微电网二次电压与频率协同控制的MATLAB仿真模型,旨在优化系统动态响应及稳定性。 复现文献:《基于事件触发更新方法的集中式与分布式二次控制在孤岛微电网恢复中的应用》——T. Qian, Y. Liu, W. H. Zhang, W. H. Tang* 该模型质量非常高,运行效果完美。本模型为一个由4台发电机并联组成的孤岛系统,在下垂控制的基础上加入了二次控制,并采用了事件触发的方法来减少控制器的更新次数,实现了电压与频率的协同控制策略。这种方法适用于计算资源有限的情况下的孤岛微电网二次控制应用,能够有效抵消一次控制偏差。 模型简介:该研究详细介绍了在孤立微电网恢复过程中如何利用集中式和分布式二次控制系统以提高系统的稳定性和效率,并通过事件触发机制优化了控制器的工作频率,从而节省了宝贵的计算资源。
  • 与并运行
    优质
    《微电网孤岛与并网运行控制》一书深入探讨了微电网在孤岛和并网模式下的运行策略及控制技术,为电力系统的稳定性和效率提供解决方案。 基于微电网的并网PQ控制和孤岛运行的V/F控制参数已经设置完毕,可以直接运行出波形且无错误。
  • 在并无缝切换策略(2014年)
    优质
    本研究提出了一种创新的微电网控制策略,旨在实现微电网系统从并网到孤岛模式及反之的快速、安全和高效转换。该方法利用先进的电力电子技术和智能控制系统,确保了在不同运行模式下对电压、频率等参数的有效调控,从而提高了系统的可靠性和灵活性,适应可再生能源的接入与分布式发电的发展需求。 微电网并网与孤岛运行模式之间的无缝切换控制策略是确保其安全稳定运行的关键因素。本段落将新型主从控制策略及对等控制策略相结合,用于管理微电网由并网模式向孤岛模式的转换过程。在DigSILENTPowerFactory平台上构建了一个包含光伏电池和蓄电池的微电网仿真模型,验证了所提出的控制策略的有效性,并确保了微电网有功、无功功率、电压及频率的稳定性。
  • DCdroopbasic.rar_下垂功率_下垂_
    优质
    本资源为DCdroopbasic.rar,专注于研究孤岛模式下微电网中的下垂控制策略及其功率分配机制。 基本的直流微电网下垂控制可以在孤岛运行模式下实现电压-功率控制。
  • 直流运行策略
    优质
    本研究聚焦于直流孤岛微电网的高效与稳定运行,提出创新性的控制策略,以优化系统性能和能源利用效率。 本段落研究了一种由光伏阵列、燃料电池和超级电容构成的低压单极型直流微电网,在充分考虑分布式电源特性的基础上,探讨了该系统的运行控制策略。具体而言,采用开路电压比例系数法追踪光伏阵列的最大功率输出;通过斜率限制器调控燃料电池的功率变化速度以避免“燃料饥饿”,从而优化燃料电池性能并延长其使用寿命;应用滑模控制技术实现超级电容的快速充电和放电功能,保持直流母线电压稳定。在MATLAB/Simulink环境下建立了系统模型,并进行了仿真分析,结果表明所提出的控制策略能够有效提高能源利用率及改善系统的电能质量。
  • 检测MATLAB开发
    优质
    本项目致力于研究并实现基于MATLAB平台的分布式发电系统孤岛检测算法。通过仿真分析多种方法的有效性与可靠性,为电力系统的安全稳定运行提供技术支持。 孤岛检测是指在特定环境下对孤立系统进行的测试。这种测试通常用于评估软件或硬件在一个独立且隔离的状态下的性能、稳定性和兼容性。通过模拟实际使用中的各种情况,可以发现并解决潜在的问题,确保系统的可靠运行。 重写后的文字没有提及任何联系方式和网址信息。
  • 基于PLECS仿真主从研究
    优质
    本研究聚焦于利用PLECS仿真软件对微电网在孤岛运行模式下的主从控制系统进行深入分析与优化,旨在提升系统的稳定性和可靠性。 微电网孤岛模式下的主从控制PLECS仿真分析
  • 步在应用研究-Fra...
    优质
    本论文探讨了协作同步技术在分布式微电网控制系统中的应用,分析了其对提升系统稳定性和效率的作用,并提出了一套优化方案。 This book delves into the distributed control of microgrids, which are small-scale power networks designed to supply local loads within limited geographical areas. Microgrids find applications in various settings such as remote villages, hospitals, universities and educational institutions, police stations, commercial and residential buildings, shipboard power systems, military bases, and ships. The concept of a microgrid offers the potential for reliable and predictable operation of renewable energy generators through local control and support for power quality. Additionally, it allows for scalable addition of new generation sources and loads. Traditionally, microgrids have been integrated into conventional AC distribution networks to supply AC loads. These types of microgrids are referred to as AC microgrids. Recently, DC microgrids have garnered significant attention due to their advantages. Unlike AC microgrids, DC microgrids utilize a DC electrical infrastructure for power delivery and management. This book applies techniques from the distributed cooperative control of multi-agent dynamical systems to address synchronization, power sharing, and load balancing issues in both AC and DC electric power microgrids. Distributed networks of coupled dynamical systems have attracted considerable attention over the years due to their relevance across various fields such as biological and social systems, physics, chemistry, and computer science.
  • 基于Simulink下垂仿真
    优质
    本研究利用Simulink平台,针对孤岛运行和并网模式下的微电网系统,设计并验证了有效的下垂控制策略,以实现频率与电压稳定。 基于Simulink的孤岛并网微电网下垂控制仿真包括并网与孤岛下垂控制模型仿真以及构建控制器内部结构;下垂控制是指选择类似传统发电机频率一次特性曲线作为微源的控制方式,即通过P/f 下垂控制和Q/V 下垂控制来获取稳定的频率和电压。