《机器人学中的几何基础》一书深入探讨了机器人设计与操作中不可或缺的几何原理,涵盖姿态表示、运动规划等核心概念,为读者构建坚实的理论框架。
机器人学的几何基础是研究机器人的建模、分析及控制的重要领域之一。它不仅涵盖了机械结构的设计,还深入探讨了运动特性和动力特性,并为设计仿真路径规划以及与环境互动提供了理论依据。
在构型设计中,了解拓扑结构至关重要。通常情况下,一个机器人由多个关节和连杆构成,根据功能的不同可以分为转动关节和移动关节。每种类型的关节连接两个连杆以形成串联机械臂的构造形式。研究这些组成部分的数量、种类以及排列顺序对于获取预期运动特性和操作范围具有重要意义。
在几何基础中,运动学分析占据核心地位。它包括正向与逆向两种方式:前者是根据给定的角度或位置计算末端执行器的位置和姿态;后者则是通过已知的末端执行器信息来确定机器人的关节角度。由于可能存在的多个解的可能性,逆运动学通常比正向更复杂。
此外,机器人动力学研究了在受到外力作用时其如何移动的变化规律。这涉及到牛顿-欧拉方程和拉格朗日方程两种方法的应用:前者基于牛顿定律分析每个连杆的受力情况;后者则是通过系统动能与势能构建出描述运动变化的动力学模型。动力学研究对机器人控制系统的设计至关重要,因为它关系到如何精确控制执行复杂的任务。
另外,路径规划和碰撞检测也是几何基础的一部分。路径规划指的是在工作空间中从起始位置移动至目标位置并避开障碍物的过程;而碰撞检测则是确保机器人不会与环境中的其他物体接触或发生碰撞的技术手段。这些技术通常需要利用机器人的构型信息以及对周围环境的描述。
视觉和感知技术也是几何基础的一部分,尤其是在一些应用当中,如通过视觉系统获取环境数据等场景下尤为重要。这类信息一般以点云、图像等形式存在,并需借助一系列几何算法进行处理,例如特征提取、三维重建及定位映射等操作。这些手段对于机器人自主导航与操作至关重要。
综上所述,机器人学的几何基础涵盖了构型设计、运动学分析、动力学建模以及视觉感知等多个方面知识体系。这不仅对从事相关研究和工程应用的专业人士来说必不可少,还为推动整个领域的发展提供了坚实的基础支持。