本篇论文荣获2012年度高教社杯全国大学生数学建模竞赛D题国家一等奖,展现了作者们在复杂问题求解与模型构建上的卓越能力。
2012年“高教社杯”全国大学生数学建模竞赛(CUMCM)国家一等奖优秀论文D题探讨了机器人避障问题,并通过构建非线性0-1整数规划模型寻找最短路径及最短时间路径。
这篇论文展示了如何利用数学建模解决机器人在复杂环境中的避障难题,不仅设计了一个精确的优化模型,还提出了启发式算法来简化求解过程。借助MATLAB和LINGO软件进行计算后,研究者成功找到了最优路径及其所需的时间。
关键词包括:机器人避障、0-1规划模型及启发式算法。
论文主要关注在存在障碍物的情况下,如何帮助机器人从起点到达终点时找到最短且耗时最少的路线。作者首先建立了一个非线性整数规划模型来应对这一挑战,该模型考虑了路径中的几何限制条件:例如转弯半径至少为10个单位,并保持与障碍物之间至少有10个单位的安全距离。
论文将避障问题转化为一个优化任务,在这个转化过程中,它被定义成以不接触任何障碍物为目标的约束条件下寻找最短路线的问题。随后作者设计了两种启发式算法并用MATLAB编程求解,从而得到了从O到A、B、C以及由A至B再到C的最佳路径。
对于如何找到耗时最少且安全的路径问题,论文进一步提出了一种新的0-1非线性整数规划模型。针对特定场景如从起点O前往目的地A,该模型考虑了机器人的最大直线速度和转弯速度限制因素,并利用LINGO软件计算出最合适的转弯半径以实现最短时间路线。
文中详细列出了具体路径的坐标、圆心位置以及相应的最优距离与耗时数据。这些结果不仅验证了理论框架在实际问题中的实用性,还展示了模型的有效性。
这篇论文通过数学建模和启发式算法解决了机器人避障的关键挑战,并为其它需要处理复杂路径规划任务的应用领域(如物流配送及无人驾驶等)提供了有价值的参考方法。