Advertisement

关于湍流中颗粒团聚模拟的研究论文

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究论文深入探讨了湍流环境中颗粒物聚集现象的数值模拟方法,旨在揭示复杂流动条件下颗粒相互作用机制及其动态演变过程。通过建立高精度计算模型,分析不同条件下的颗粒团聚特征与规律,为颗粒物质在自然及工程领域中的应用提供理论支持和实践指导。 湍流团聚是促进颗粒聚集的有效手段。采用经典的欧拉-欧拉二流体模型与人口平衡模型的结合来模拟这一过程。仿真结果显示,湍流团聚能够使小于10微米的细小颗粒排放减少56%。特别是,小于2微米的小颗粒很容易被去除,而中等尺寸的颗粒则难以去除。适当的叶片间距有助于从气流中移除细小颗粒,并且较小的角度设置可以进一步改善对这些细微粒子的清除效率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究论文深入探讨了湍流环境中颗粒物聚集现象的数值模拟方法,旨在揭示复杂流动条件下颗粒相互作用机制及其动态演变过程。通过建立高精度计算模型,分析不同条件下的颗粒团聚特征与规律,为颗粒物质在自然及工程领域中的应用提供理论支持和实践指导。 湍流团聚是促进颗粒聚集的有效手段。采用经典的欧拉-欧拉二流体模型与人口平衡模型的结合来模拟这一过程。仿真结果显示,湍流团聚能够使小于10微米的细小颗粒排放减少56%。特别是,小于2微米的小颗粒很容易被去除,而中等尺寸的颗粒则难以去除。适当的叶片间距有助于从气流中移除细小颗粒,并且较小的角度设置可以进一步改善对这些细微粒子的清除效率。
  • 优质
    颗粒聚集模拟是研究微粒在物理、化学作用下相互结合形成更大结构的过程。通过计算机建模分析颗粒间的动态行为与聚集机制,以揭示材料科学及环境工程中的重要现象和规律。 使用商业CFD软件,并应用颗粒群平衡模型,通过UDF导入颗粒团聚核函数来计算颗粒团聚。
  • 大涡与应用.pdf
    优质
    本论文探讨了大涡模拟(LES)方法在湍流研究领域的理论基础及其实际应用价值,分析了其最新进展和面临的挑战。 大涡模拟基础理论学习教材以及商用CFD软件中的LES模型的理论基础。
  • CFD
    优质
    本研究聚焦于计算流体动力学(CFD)中湍流模型的应用与优化,探讨不同湍流模型在复杂流动问题中的适用性及局限性。 Turbulence modeling for CFD by Wilcox D.C is a classic work. It is available in Djvu format, which is said to be better than PDF.
  • PFC.zip_PFC接触型在应用
    优质
    本研究探讨了PFC颗粒接触模型在模拟颗粒流动中的应用,分析其准确性和适用范围,并通过具体案例展示了该模型的有效性。 颗粒流软件线性接触模型建立文件,仅供学习交流。
  • 三维轮廓PFC板生成(2019)-PFC-
    优质
    本文介绍了一种创新方法,用于生成基于三维轮廓的颗粒流(PFC)颗粒模板。该技术能够准确模拟复杂形状的颗粒,提升材料力学行为的仿真精度。 本段落探讨的主题是利用三维轮廓数据来创建PFC(Particle Flow Code)颗粒模板的方法,并将其应用于岩土力学研究中的颗粒流模拟。PFC是一种离散元素方法(DEM)软件,常用于模拟土壤、岩石和其他颗粒材料的动态行为。 进一步细化主题的是一个辅助工具,它能够帮助用户基于三维轮廓数据生成适合于PFC模拟所需的颗粒模板。在岩土力学领域中,理解材料微观结构对预测其宏观性能至关重要,而PFC通过模拟颗粒间的相互作用来实现这一目标。 为了更好地了解本段落内容,首先需要介绍PFC的基本概念。这是一种计算程序,用于模拟颗粒之间的碰撞、摩擦和黏附等物理过程,并研究这些系统的动力学特性。在岩土工程中,所涉及的颗粒可能是土壤或岩石碎块。通过将每个颗粒视为刚体并用数学模型描述它们的状态及相互作用,PFC能够预测地质材料的行为。 此外,三维轮廓数据在此过程中起到关键作用,它提供了有关颗粒形状和分布的信息,在实际应用中非常有用。
  • - MIKE11-NAM型在验证
    优质
    本研究采用MIKE11-NAM模型进行河流流量模拟,并对其准确性进行了详细验证。通过对比实测数据与模型预测结果,评估了该模型在不同条件下的适用性和可靠性。 流域水文过程建模对于水资源的规划、开发与管理至关重要。在这项研究中,评估了MIKE 11-NAM(Nedbor-Afstromings模型)在模拟印度中央邦比纳盆地水流情况中的应用效果。该模型使用从1994年至1998年五年的水文观测数据每天进行校准和验证。此外,对九个MIKE 11-NAM参数进行了敏感性分析以识别影响最大的模型参数。 统计及图形方法被用来评估此模型在流域模拟中的表现情况。研究结果显示,在日常模型校准时,确定系数(R2)为0.87%,水平衡误差百分比(WBL)为-8.63%;而在验证阶段,该值分别为0.68%和-6.72%,表明模型性能良好。 敏感性分析的结果还显示,陆流径流量系数(CQOF)、陆流时间常数(CK1,2)以及根区存储中的最大含水量(Lmax),是影响水流模拟的最关键参数。综上所述,依据R2和EI指标评估结果来看,该模型的表现令人满意。
  • 子群算法应用心选址.pdf
    优质
    本文探讨了将粒子群优化算法应用于物流中心选址问题的研究与应用,分析其在提高选址效率和减少成本方面的优势。通过实例验证了该方法的有效性和实用性。 客户细分是客户关系管理中的基础且重要的组成部分。本段落全面考虑了客户的生命周期价值,并结合群体决策技术和数据挖掘技术提出了一种新的客户细分方法。首先,在群体决策的基础上确定影响客户分类的关键变量,然后利用层次分析法来设定这些变量的权重。接着通过应用数据挖掘中的聚类技术进行具体客户分群工作。以某橡胶企业为例进行了验证性研究,结果表明该方法能有效支持企业的客户细分,并为公司决策提供有力的数据支撑。
  • darcy.rar_CFD DEM_DEM_CFD与DEM仿真
    优质
    Darcy.rar包含CFD-DEM(计算流体动力学与离散元素方法)工具包,用于进行颗粒系统的计算机仿真和分析。此资源适用于研究涉及颗粒流动、传输等问题的科研人员及工程师。 CFD(计算流体动力学)与DEM(离散元法)的耦合技术是现代工程及科学研究解决复杂流动与颗粒相互作用问题的重要手段之一。本段落将深入探讨这两种方法及其在颗粒模拟中的应用。 CFD是一种数值计算方法,用于模拟流体运动和热力学过程。它通过解析Navier-Stokes方程来描述流体行为,这些方程描述了流速、压力、温度及密度等物理量随时间和空间的变化情况。在CFD中,通常将流体离散化为无数控制体积或网格节点,并在此基础上利用差分方法计算和更新每个节点上的物理量。 DEM则是一种用于模拟固体颗粒系统的离散方法。它主要关注的是颗粒间的碰撞与相互作用,而非颗粒内部的流体力学特性。在DEM中,每一个粒子都被视为刚体,它们之间的碰撞基于牛顿第二定律及相应的碰撞理论进行模拟计算。这种方法广泛应用于土壤、沙子和粉末等材料的行为研究。 当CFD与DEM相结合时(即CFD-DEM),这种技术能够同时处理流体和颗粒的动力学行为,并精确地模拟两者间的相互作用问题,如“darcy.rar”项目中所探讨的水流在层流条件下冲刷土体颗粒的过程。此方法的应用领域包括地质工程、环境科学以及化工等众多行业,例如土壤侵蚀分析、海底沉积研究及粉末混合技术优化。 假设文件darcy.py是整个CFD-DEM模拟的核心代码,则可以推测该脚本可能涵盖了设定流体网格、定义颗粒属性、设置边界条件、求解Navier-Stokes方程与碰撞动力学方程,以及更新流体和颗粒状态等一系列步骤。Python语言因其强大的科学计算能力,在此类应用中十分常见。 在实际操作过程中,CFD-DEM模拟通常涉及以下关键步骤: 1. 网格生成:划分流体域的网格,并确定计算精细程度。 2. 颗粒建模:设定颗粒大小、形状、密度及弹性等属性。 3. 边界条件设置:定义流体和颗粒的入口、出口以及壁面边界条件。 4. 求解器应用:利用适当的数值方法求解流体与颗粒的动力学方程。 5. 碰撞处理:考虑颗粒间的碰撞及流体对颗粒的影响。 6. 时间步进更新:通过迭代方式持续更新流体和颗粒的状态,直至达到稳定状态或预设的计算时间。 CFD-DEM模拟能够提供关于水流如何冲刷搬运土体颗粒以及这些过程对于流场影响等丰富的定量信息。这对于优化相关工程设计具有重大价值,例如改进水力结构以减少土壤侵蚀或者提升粉末混合工艺效率。 结合了流体力学和颗粒动力学优势的CFD-DEM耦合技术为解决涉及复杂颗粒与流体相互作用问题提供了强有力的支持工具。“darcy.py”案例展示了这种技术在层流土壤侵蚀模拟中的具体应用。理解并掌握这一方法对于相关领域的科研及工程实践至关重要。
  • MATLAB大气退化图像复原
    优质
    本文利用MATLAB平台,探讨了大气湍流对光学成像系统的影响,并提出了一种有效的图像复原算法以改善受湍流影响的图像质量。 这篇硕士论文探讨了大气湍流退化图像复原的问题。我使用MATLAB对该论文所阐述的方法进行了仿真。