Advertisement

500W开关电源电路设计方案图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本设计文档提供了一种500瓦开关电源的详细电路方案和布局图,旨在为工程师和技术人员在开发高效、稳定的电源供应系统时提供指导和支持。 设计了一款500W的开关电源,并附有电路原理图及必要的说明文档,适合初学者参考学习。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 500W
    优质
    本设计文档提供了一种500瓦开关电源的详细电路方案和布局图,旨在为工程师和技术人员在开发高效、稳定的电源供应系统时提供指导和支持。 设计了一款500W的开关电源,并附有电路原理图及必要的说明文档,适合初学者参考学习。
  • 500W推挽式
    优质
    本项目聚焦于500W级别的高效、可靠的推挽式开关电源的设计与开发。通过优化电路结构和选用高品质元件,旨在实现高功率输出的同时保证良好的稳定性及低电磁干扰,适用于工业设备、通信系统等领域。 500W推挽式开关电源的设计思路及电路设计原理涉及多个方面。首先需要明确电源的工作频率、输入输出特性以及功率需求。然后根据这些参数选择合适的变压器、电容和其他关键元件,确保系统的稳定性和效率。 在设计过程中还需要考虑电磁兼容性(EMC)和安全规范的要求,并进行相应的测试验证以保证最终产品的可靠性和安全性。此外,推挽式拓扑结构的特点包括高效率、低损耗以及良好的输出电压调节性能,在大功率电源应用中具有明显优势。
  • STM32 500W
    优质
    本项目提供了一种基于STM32微控制器的高效电源解决方案,适用于需要大功率供电的应用场景。该方案能够实现高达500瓦特的电力输出,并具备智能调节与保护功能。 STM32 500W电源原理图采用LLC+同步整流技术,并使用无桥PFC设计,由STM32主控芯片控制。
  • 基于NCP1618与NCP13992的500W高功率医疗-
    优质
    本设计采用NCP1618和NCP13992芯片,提出一种高效稳定的500W高功率医疗电源解决方案,确保医疗设备安全可靠运行。 随着科学技术的不断进步,现代医疗器械得到了快速发展,特别是那些直接与人体接触的电子仪器。除了对这些设备性能的要求不断提高外,人们也越来越重视它们对人体安全的影响。例如:呼吸机、心脏穿刺监视器、超声波检测仪、母婴监护仪和婴儿保温仪等都必须确保在使用过程中不会给患者带来触电或其他危险。 为了满足全球医疗应用中对内置式PCB型电源更高功率的需求,我们提供了一种500W高功率密度的设计方案。这种设计方案能够达到绝缘等级要求,并且超低漏电流(小于190uA),适用于BF型等各类病患接触式的医疗设备,包括但不限于医疗生化检验仪器、医用监护仪以及医用机器手臂。 该500W的解决方案采用NCP1618和NCP13992搭配NCP4318同步整流的半桥设计。其中,NCP1618可根据负载的不同工作在CRM(临界模式)、CCM(连续导通模式)或DCM(断续导通模式)。此外,在轻载待机方面比上一代产品提升了30MW,并且满载效率提高了2%。 另一方面,NCP13992采用电流模式控制,支持高达750KHZ的工作频率。它还具有半数位控制功能,可以轻松实现过载保护、硬开关电流保护以及死区调整等功能。同时,该控制器无需额外的过载和短路响应系统,并且有更快的稳定响应时间。 NCP4318作为同步整流器控制器,支持两路驱动控制并具有独特的关断控制算法以提高整体效率。它能够实现6.5V到35V范围内的电源控制以及1.5A至5A的驱动能力,并且可以适应不同的驱动电压来改善性能。 该方案的具体规格如下: - 输入电压:80-264VAC - 输出电压:11.4VDC--12.6VDC - 输出电流:42A - 待机功耗:< 250MW@230VAC - 平均效率:高达95.36% - 工作温度范围:-30~+70℃ - 保护特性包括过热、欠压锁定等 - 尺寸规格为183mm*93mm*30mm - 散热条件支持自然风冷散热达到500W功率输出 - 安装环境兼容Class I 和 Class II系统安装要求 - 医疗认证包括UL、CUL、TUV和CB等国际标准认证。 该设计方案由大大通提供。
  • 24V 350W
    优质
    本设计提供了一种高效的24V 350W开关电源解决方案,采用先进的电路技术,确保高效率和稳定性,适用于各类电子产品及工业设备。 附件内容包含24V,350W开关电源的相关资料,可直接用于生产。提供的文件包括PCB布局图、物料清单(BOM单)、原理图以及结构图纸等信息。
  • 12V 15W 及PCB布局-
    优质
    本项目专注于12V 15W开关电源的设计与优化,涵盖详细的电路方案和高效PCB布局技巧,旨在提高电源效率与稳定性。 本款工业级开关电源经过了多种测试(包括高低温、PF值、纹波、效率及各种保护电路的安规),其最大输出电压为12V,功率可达15W。该产品采用L6562+PF103芯片设计,其中L6562是一种改良版的功率因数修正器,具有以下主要特性:可调输出电压精度高、启动电流微小且电源电流低、内置电流检测滤波器及内部启动定时器。附件包含使用AD绘制的开关电源原理图和PCB图供有需要的人参考。
  • 单片机-
    优质
    本项目专注于单片机控制下的开机关机电路设计方案,旨在提供一种简洁高效的电源管理解决方案。通过优化电路结构与元件选择,实现低功耗、高可靠性的电子设备自动控制需求。 最近看到很多单片机初学者都在询问关于开关机电路的问题。我为此制作了一个图,并分享给大家。 工作原理其实很简单: 开机过程:当S1被按下后,Q1的栅极电压降低,使得Q1导通并给后续部分供电。此时单片机上电并且检测到连接处有低电平信号,表明是开机键已被按压。这时控制IO输出高电平使Q2导通,而当Q2导通后会拉低Q1的栅极电压,从而完成整个开机过程。 关机过程:同样地,在S1被按下时,单片机会检测到连接处有低电平信号,并且此时控制IO输出低电平使得Q2截止。这样在松开S1之后就可以断电了。 是不是很简单呢?
  • TL494.rar
    优质
    本资源提供了一套基于TL494芯片设计的高效开关电源方案,包含详细的电路图、元件选型及参数设置说明。适合电子工程师参考学习。 基于TL494开关电源设计的全面介绍包括内部结构、管脚说明、时序讲解以及应用电路等内容,并以PPT格式呈现。
  • 高效94.5%的500W池充,采用TI UCC28064A-
    优质
    本方案介绍了一款高效的500W蓄电池充电器,转换效率高达94.5%,采用德州仪器UCC28064A芯片进行电路设计,旨在提供高性能、高可靠性的充电解决方案。 本段落介绍的是一款紧凑型且高效率的24V直流、500W电池充电器参考设计。它属于工业用AC/DC电源解决方案,在85至265伏特的工作电压范围内可以持续满载工作,输出电压范围为7.5-500瓦或5-56伏特。 此方案不仅适用于电池充电器,同样也适用于各种工业应用场合如过程控制、数据记录、机械控制、仪表及工厂自动化和安全系统。这些应用场景通常需要电源具备对流冷却能力,并能在短时间内实现输出负载的迅速增加以及功率提升的功能特点。 该设计采用了一个基于TI UCC28064A的交错双相转换模式(TM)功率因数校正(PFC)前端,这有助于减小PFC电感器尺寸并降低EMI滤波器的需求。直流/直流电源部分则通过HB-LLC级实现,并使用了TI公司的UCC256301器件来优化性能。 为了提高效率,在次级侧采用UCC24612实现了同步整流。其中,TI UCC28064A是一个两相交错式临界导通模式(CrCM)PFC转换器,输入工作电压范围为85至265伏特交流电,并产生出400V直流总线电压;第二阶段则由隔离式的半桥LLC级组成,能够生成24V、20A的标称输出。 该方案在从半载到满载的工作状态下,在整个工作电压范围和宽负载变化范围内均能保持高效率。它的尺寸仅为155×125毫米,并能够在85至265伏特交流电的所有输入工作电压下提供连续480W的功率输出,对于230VAC标称操作时其效率大于94.5%,而在115VAC条件下则达到92%。此外,该方案还可以通过并联连接来支持更高功率的应用。 核心技术优势包括:满载条件下的总体效率高达94.5%,峰值效率超过95%,待机功耗小于200毫瓦;在330W的工作负载下无需强制冷却即可运行;符合传导发射标准(EN55011 B类)的要求;功率因数达到或高于0.99,满足PFC规范及IEC 61000-3-2 A类电流THD规定。 LLC控制器具有ZSC回避功能和OVP感应能力以增强可靠性,并能够对过流、短路以及过压状况进行保护;CrCM PFC则具备减少MOSFET上的匝数损耗及消除升压二极管反向恢复损失的优点。通过交错两个CrCM功率级,有效输入纹波电流得到降低并有助于最小化EMI滤波器需求。 HB-LLC电源部分通过控制UCC256301谐振控制器的先进技术实现了增加带宽的电流模式控制功能,从而减少了输出电容上所需的AC纹波抑制。
  • 防雷击浪涌的.pdf
    优质
    本文档提供了一种用于防止雷击和浪涌损害的开关电源电路设计方法,旨在提高电子设备在恶劣环境下的稳定性和安全性。 在现代电子技术领域中,开关电源电路设计至关重要,因为它不仅影响到设备的电气性能,还关系到其安全运行。随着城市化进程加快,雷击引起的浪涌电流问题日益严重。这不仅仅包括直接遭受雷击的情况,还包括感应雷和通过电力线路侵入的电磁波干扰。这些现象会导致电子设备内部电压和电流突变,对高集成度VLSI芯片造成威胁。 在开关电源电路设计中解决防雷击浪涌的技术主要是为了应对由雷电引起的电网中的电流变化问题。除了直接损害外,雷击还会通过电力线或信号线间接影响设备的正常运行。尤其是在电力系统发生短路或者负载切换时,这种现象尤为显著。由于现代电网覆盖广泛,无论是直接受到雷击还是线路浪涌的影响,电子设备都可能受到波及。 为了提升电子产品的耐压和电流承受能力,并减少感应雷电以及电压波动带来的风险,研究人员需要设计出有效的防雷电路。随着信号源路径的增加,系统对电磁干扰敏感度也相应提高,因此在电路中加入防护措施就显得尤为重要。例如,在信号输入端使用滤波器或抑制器件来抵御外来干扰。 为了保护如太阳能控制器等设备免受数据错误和传输速率下降的影响,设计人员通常会采取以下几种防雷击浪涌的策略: 1. 防护电压波动:针对电力系统短路、负荷变化等情况引起的过压现象,需要在电路中加入诸如金属氧化物压敏电阻器(MOV)、瞬态抑制二极管(TVS)和气体放电管等元件来吸收并阻止电压冲击。 2. 控制电流浪涌:通过限流装置或断路保护机制减少电流突变的影响。例如,使用电流限制电路或者自动切断设备以降低过大的电力负荷对硬件的损害。 3. 信号线路防护措施:对于可能遭受雷击影响的信号线,设计人员会采用滤波器、浪涌抑制器件等方法来确保数据传输不受干扰或损坏。 4. 物理隔离手段:在电源和信号路径之间设置物理屏障如变压器与光耦合器以减少直接电气连接带来的风险,并提高设备的整体抗扰能力。 上述措施是开关电源电路设计中不可或缺的部分。设计师必须全面考虑整个系统的安全性能,在各个阶段采取综合策略,确保最佳的防雷效果。实际应用时需结合具体设备特性、使用环境及成本预算等因素来选择合适的防护方案。通过这些技术的应用,可以显著提高电子产品的稳定性和使用寿命,并保证其在多雨季节的安全运行。