Advertisement

RK3588/RK3568/RK3566 Linux QT OpenCV NPU YoloV5 实时摄像头检测

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目基于Rockchip RK3588/RK3568/RK3566芯片,采用Linux系统与QT框架,结合OpenCV和NPU技术,实现YoloV5算法在实时摄像头图像检测中的应用。 RK3588, RK3568, 和 RK3566 使用 Debian 11 操作系统构建的 Linux 环境下,结合 QT、OpenCV 和 NPU 技术实现基于 YoloV5 的摄像头实时检测系统。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RK3588/RK3568/RK3566 Linux QT OpenCV NPU YoloV5
    优质
    本项目基于Rockchip RK3588/RK3568/RK3566芯片,采用Linux系统与QT框架,结合OpenCV和NPU技术,实现YoloV5算法在实时摄像头图像检测中的应用。 RK3588, RK3568, 和 RK3566 使用 Debian 11 操作系统构建的 Linux 环境下,结合 QT、OpenCV 和 NPU 技术实现基于 YoloV5 的摄像头实时检测系统。
  • C++ OpenCV DNN 调用
    优质
    本项目利用C++结合OpenCV和DNN库,实现了一种实时摄像头人脸检测解决方案。通过深度学习技术优化了检测效率与准确性,在资源占用上实现了良好的平衡。此应用广泛适用于安全监控、人机交互等领域。 使用C++ 和 OpenCV的DNN模块调用darknet训练的检测模型进行物体检测,并通过摄像头对每一帧画面进行实时检测。
  • Qt结合OpenCV现人脸
    优质
    本项目利用Qt框架开发图形界面,并通过集成OpenCV库实现与摄像头的连接及实时的人脸检测功能。 本项目探讨了如何结合使用Qt框架与OpenCV库进行实时的人脸检测。Qt是一个跨平台的应用程序开发工具包,主要用于创建图形用户界面;而OpenCV则是一个强大的计算机视觉库,支持图像处理和机器学习算法,包括人脸识别。 1. **集成Qt与OpenCV**:在项目中配置OpenCV需要对CameraManage.pro文件进行修改。这通常涉及到添加包含目录、库路径以及链接动态或静态的OpenCV库。例如,在该文件中可能会看到如下行: ``` INCLUDEPATH += /path/to/opencv/include LIBS += -L/path/to/opencv/lib -lopencv_core -lopencv_highgui -lopencv_imgproc ``` 2. **人脸检测原理**:本项目使用的是基于特征级的分类器,具体来说是Haar特征级联分类器。这个XML文件是一个预训练模型,包括大量的人脸正面样本,OpenCV会利用它来识别图像中的潜在脸部区域。 3. **代码结构**: - `main.cpp`作为程序入口点,负责启动Qt应用程序并创建主窗口。 - `cameramanage.cpp/h`是核心功能实现部分。其中包含了视频流捕获、帧处理和结果展示的代码,并使用了如QCamera及QCameraImageCapture等Qt多媒体模块以及OpenCV中的VideoCapture类来获取摄像头实时视频流。 - `cameramanage.ui`定义用户界面布局,可能包括显示摄像画面的控件(例如 QLabel 或 QGraphicsView)以及其他控制按钮。 4. **代码逻辑**:在`cameramanage.cpp`中,首先初始化摄像头。然后在一个循环中读取每一帧,并将每帧图像传递给OpenCV的detectMultiScale函数进行人脸检测。该函数使用预先训练好的Haar特征级联分类器识别潜在的人脸区域,之后会在原图上以矩形框的形式标记这些区域并显示在界面上。 5. **输出文件`output`**:可能包含程序运行过程中保存的人脸检测结果(如截图或日志信息),具体内容需要查看源代码了解详情。 6. **优化与拓展**:项目除了提供基础的人脸识别功能,还可以考虑使用更先进的目标检测方法(例如SSD、YOLO)或者通过OpenCV的LBPH、EigenFace等实现人脸识别。这可以进一步扩展应用程序的功能,如人脸跟踪和表情识别等。 本项目为一个基于Qt+OpenCV框架进行实时人脸检测应用的基础模板,理解代码结构有助于深入学习计算机视觉技术在实际场景中的应用。
  • QT UVC
    优质
    QT UVC摄像头检测是一款用于评估和测试UVC兼容摄像头性能的应用程序或工具。它能够帮助用户全面了解并优化其设备在视频通话、监控等场景下的表现。 进行Qt UVC摄像头测试后发现一切正常。然后检查设备编号,并在代码中将对应的/dev/video路径进行了相应的调整。
  • Qt+OpenCV 展示画面.zip
    优质
    本项目为一个使用Qt与OpenCV库开发的应用程序源代码包,旨在实现实时显示电脑摄像头画面的功能。该应用支持视频流捕获、预览及处理操作,并提供用户界面进行交互控制。 使用QT与OpenCV在Jetson Nano这样的高效能、低功耗嵌入式平台上实时显示摄像头画面是一种典型的图像处理应用场景。Ubuntu 18.04操作系统为开发环境提供了稳定且强大的支持,而Qt 5.9则是一个广泛使用的跨平台应用程序框架,允许开发者构建用户界面;OpenCV 4.1则是用于图像和视频数据处理的强大计算机视觉库。 在开始项目前,需要确保Jetson Nano已经正确安装了Ubuntu 18.04操作系统,并且该系统已更新至最新版本以获取所有必要的安全修复与性能优化。下一步是安装Qt 5.9及OpenCV 4.1,在Ubuntu中可通过apt包管理器来执行此操作: ```bash sudo apt update sudo apt install qtbase5-dev libqt5svg5-dev sudo apt install build-essential cmake git libopencv-dev python3-opencv ``` 安装完成后,可以着手编写代码。Qt部分用于创建用户界面,而OpenCV负责从摄像头捕获图像并进行处理。在Qt中创建一个新项目,并设置主窗口及QLabel控件以显示视频流。 使用OpenCV的`VideoCapture`类可以从设备读取视频帧;每一帧的数据则存储于Mat对象之中。为了流畅地更新UI,需要定期调用`VideoCapture::read()`方法获取新的图像数据,将其转换为QImage,并通过设置QLabel的pixmap属性来显示这些数据。这一步骤中需注意线程安全问题,可能要用到Qt信号槽机制或QThread以避免阻塞用户界面。 在名为usb-cameratest0322w的文件里可能会找到实现上述功能的具体代码。深入研究这个文件有助于了解如何将QT和OpenCV整合进实际项目之中。 另外,在Jetson Nano这样的硬件受限设备上优化代码,减少CPU与内存使用十分重要。可以通过调整帧率、降低图像处理复杂度或利用OpenCV多线程特性来提高效率实现这一点。 通过这项任务——结合嵌入式系统、图形用户界面设计以及计算机视觉技术的学习实践,开发者能够掌握如何在资源有限的设备上高效地进行图像数据处理,并同时提供友好的交互界面。这对于希望进入物联网(IoT)或智能设备开发领域的专业人士来说是一个非常有价值的案例研究与学习机会。
  • Qt+OpenCV+USB
    优质
    本项目结合了Qt界面开发框架、OpenCV计算机视觉库以及USB摄像头技术,旨在创建一个高效、灵活的图像处理和分析平台。 QT+OpenCV+USB摄像头功能包括录像、拍照和播放录像。
  • Python OpenCV 人脸代码示例
    优质
    本代码示例利用Python和OpenCV库实现实时摄像头中的人脸检测功能,可帮助开发者快速了解并实现基本的人脸识别应用。 参考OpenCV摄像头使用代码: ```python import cv2 cap = cv2.VideoCapture(4) # 使用第5个摄像头(假设电脑插了5个摄像头) face_cascade = cv2.CascadeClassifier(haarcascade_frontalface_default.xml) # 加载人脸特征库 while True: ret, frame = cap.read() # 读取一帧的图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转灰度图 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) ``` 注意:代码中`face_cascade`部分需要正确路径或资源文件加载,确保haarcascade_frontalface_default.xml存在并可用。
  • Python-OpenCV人脸(含练习图片)
    优质
    本教程详细介绍如何使用Python和OpenCV库进行摄像头实时人脸检测,并包含练习所需的相关图片资源。适合初学者实践与学习。 使用Python-OpenCV进行人脸数据采集,并通过训练来识别摄像头捕捉的每一帧人脸信息。步骤如下:首先迭代收集图片路径及图片信息;然后利用Haar特征检测每张图片中的人脸部分;接着对图片信息进行标签编码处理;之后采用局部二值模式直方图创建人脸识别器;再训练该人脸识别器;最后,通过摄像头采集实时图像帧并对其进行识别判断。
  • RK3588上部署Yolov5s模型源码()及部署指南
    优质
    本文章提供了一份详细的教程,在RK3588平台上成功部署Yolov5s模型以实现实时摄像头物体检测,并附带相关技术细节和实用的部署指导。 标题中的“RK3588上部署yolov5s模型源码(实时摄像头检测)+部署说明文档”指的是在Rockchip RK3588处理器上实现YoloV5s深度学习模型的实时摄像头物体检测应用,这是一个硬件加速的AI推理项目。它包括了详细的源代码和部署指导。 RK3588是Rockchip公司推出的一款高性能、低功耗系统级芯片(SoC),主要用于智能物联网、边缘计算和人工智能设备。该处理器集成了多核CPU、GPU以及神经网络处理单元(NPU),为AI应用提供了强大的计算能力。 YoloV5s属于YOLO系列的第五版,专门优化了速度以适应实时物体检测任务,在计算机视觉领域广泛应用,特别适用于视频流分析等场景中。 部署YoloV5s模型到RK3588上通常需要以下步骤: 1. **模型转换**:将预训练的Yolov5s模型转化为适合在RK3588 NPU运行的形式。这可能包括使用ONNX或TensorRT工具,将其转为特定硬件优化格式。 2. **SDK集成**:下载并安装Rockchip提供的开发套件,包含驱动程序、编译器和SDK等。这些工具一般含有用于与NPU交互的API,可以用来编写源代码来加载及执行模型。 3. **源码编写**:根据已有的源码创建一个应用程序,该程序能够捕获摄像头输入,并将图像数据传递给NPU进行物体检测后显示结果。这包括了图像处理、模型推理和解析等环节。 4. **环境配置**:确保操作系统(如Linux)正确配置,包含库依赖项及权限设置的检查。还需要安装好OpenCV库以实现摄像头访问与图像处理。 5. **性能优化**:利用NPU硬件加速功能调整模型参数,例如批处理大小和内存分配等,达到最佳性能与功耗平衡。 6. **测试与调试**:在部署前进行充分的测试来检查准确性和实时性。如果发现任何问题,则可能需要调整模型参数或优化代码。 7. **部署说明文档**:该文件详细列出了每一步操作,包括硬件连接、软件安装和环境配置等步骤,以便其他开发者或用户能够按照这些指导完成整个过程。 在提供的“npu”文件中包含针对RK3588 NPU的特定优化代码或者接口封装以高效运行Yolov5s模型。根据文档中的指南结合源码进行编译调试后,最终实现模型在RK3588上的实时物体检测应用。