
使用MATLAB实现Jacobi迭代法、Gauss-Seidel迭代法、逐次超松弛迭代法和共轭梯度法
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本项目采用MATLAB编程实现了求解线性方程组的四种经典迭代方法,包括Jacobi迭代法、Gauss-Seidel迭代法、逐次超松弛(SOR)迭代法以及共轭梯度法。
求解线性方程组 Ax=b,其中 A 是一个 nxn 的已知矩阵,b 是 n 维的已知向量,x 则是待求的 n 维未知向量。请使用以下四种方法进行计算:(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法;(3)逐次超松弛迭代法(SOR);以及 (4) 共轭梯度法。矩阵 A 是对称正定的,其特征值符合在 [0, 1] 区间内的均匀分布,向量 b 的元素遵循独立同分布的标准正态分布。分别设定 n 等于 10、50、100 和 200,绘制出上述四种方法各自的收敛曲线图,横轴表示迭代次数,纵轴表示相对误差。
此外,请比较 Jacobi 迭代法、Gauss-Seidel 迭代法、逐次超松弛迭代法和共轭梯度法与高斯消去法及主元消去法的计算时间。调整逐次超松弛迭代法中的松弛因子值,分析其对收敛速度的影响。
全部评论 (0)
还没有任何评论哟~


