Advertisement

汽车线控技术之线控转向系统

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PPT


简介:
线控转向系统是一种先进的汽车操控技术,通过电子信号而非机械连接传递驾驶指令,提供更高的灵活性和安全性,是未来自动驾驶车辆的关键组件。 线控转向系统(Steer-by-Wire)是一种先进的汽车技术,它通过电子信号来传递驾驶员的操控指令到车辆的转向机构,而无需传统的机械连接。这种设计不仅可以减少重量、提高燃油效率,还可以为高级驾驶辅助系统的集成提供更多的灵活性和可能性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线线
    优质
    线控转向系统是一种先进的汽车操控技术,通过电子信号而非机械连接传递驾驶指令,提供更高的灵活性和安全性,是未来自动驾驶车辆的关键组件。 线控转向系统(Steer-by-Wire)是一种先进的汽车技术,它通过电子信号来传递驾驶员的操控指令到车辆的转向机构,而无需传统的机械连接。这种设计不仅可以减少重量、提高燃油效率,还可以为高级驾驶辅助系统的集成提供更多的灵活性和可能性。
  • 线.pdf
    优质
    《汽车线控转向技术》一文深入探讨了线控转向系统的工作原理、设计方法及应用前景,分析其在提高驾驶安全性和舒适性方面的作用。 线控技术(By-Wire)是一种通过电信号传递转向控制的技术,而不是依靠机械连接装置的硬连接来实现操作。这种技术在现代飞机上已经得到了广泛应用,并且被称为电传操纵系统(Fly-By-Wire)。其基本原理是将飞行员的操作信号转换成电信号并通过电缆传输到自主式舵机。 汽车中的线控技术则是通过传感器捕捉驾驶员的动作,将其转化为电信号并直接传递给执行机构。目前的线控技术包括了线控换挡、线控制动、线控悬架、线控行驶增压系统、电控油门和电子转向等不同种类。其中,特别是在高级轿车、跑车以及概念车型中,电子转向系统的应用非常广泛。
  • 线结构及原理剖析
    优质
    本文章详细解析了汽车线控转向系统的构成与工作机制,深入探讨其关键技术及其发展现状。适合汽车行业从业者和技术爱好者阅读。 一、线控转向系统的结构及工作原理 (一)线控转向系统的结构 汽车线控转向系统主要由四个部分组成:转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统。 1. 转向盘模块 该模块包括转向盘组件、转向盘转角传感器、力矩传感器和回正力矩电机。它的作用是将驾驶员的转向意图通过测量方向盘的角度转换成数字信号传递给主控制器,同时根据主控制器发出的控制信号产生相应的回正力矩以提供路感信息。 2. 前轮转向模块 该模块包括前轮转角传感器、执行电机及其控制器和前轮转向组件等。
  • 线讲解.ppt
    优质
    本PPT详细介绍汽车线控技术的概念、原理及其在现代汽车中的应用,包括线控制动、转向等系统的工作机制和发展趋势。 汽车线控技术是一种先进的车辆控制系统设计,它通过电子信号而非传统的机械连接来操作车辆的主要功能部件。这种技术可以提高驾驶的精确度、舒适性和安全性,并且为自动驾驶系统的发展提供了重要的技术支持。在传统汽车中,转向盘直接与车轮相连,而刹车踏板则通过液压系统作用于制动器上。而在采用线控技术的现代汽车里,这些机械连接被电子信号所替代。 例如,在线控制动系统(Electro-Hydraulic Brake, EHB)当中,当驾驶员踩下刹车时,传感器会将这一动作转化为电信号,并发送到中央处理器进行处理和分配给各个车轮所需的制动力。在线控转向系统中,则是通过一系列的电子部件来实现从方向盘转动到车辆实际转弯之间的信号传递。 这些技术的应用不仅减少了重量与复杂性,还增加了系统的灵活性以及可调范围,使得工程师能够更自由地设计出更加高效、节能且安全的产品。随着自动驾驶领域的发展,线控技术的重要性愈发凸显出来,在未来将会有更多的创新和突破出现。
  • 线介绍:线制动的组成部分
    优质
    本文章将详细介绍汽车线控制动系统的主要组成部分及其工作原理,旨在帮助读者了解这一先进的汽车驾驶辅助技术。 线控制动系统主要由三部分组成:接收单元、制动控制器(ECU)以及执行单元。 1. 接收单元包括制动踏板与踏板行程传感器。 2. 制动控制器(ECU)负责接收并处理来自制动踏板的信号,以激活或调节刹车系统的功能;同时它也接收到驻车制动指令,并控制相应的操作。此外,该控制器还能够根据车轮传感器提供的信息判断车辆是否出现抱死或者打滑等状况,并通过调整制动力来防止这些情况的发生。 3. 执行单元则包括电制动器和液压制动器等硬件设备,在ECU的指挥下执行具体的刹车动作。 整个系统紧密协作,确保汽车在各种驾驶条件下都能安全稳定地减速或停车。
  • 【精华内容】揭秘线内部资料
    优质
    本资料深入解析了汽车线控转向技术的核心原理与应用,涵盖系统架构、工作模式及未来发展趋势等内容,旨在为行业专业人士提供详尽的技术参考。 【干货】汽车线控转向技术 本段落将深入探讨汽车线控转向技术的相关内容,提供有价值的资料与见解。 --- 请注意,上述文本仅保留了核心主题“汽车线控转向技术”,去除了重复的标题及任何可能包含联系信息的部分,并且确保不含有联系方式和网址。
  • 动力
    优质
    汽车电控动力转向系统是一种利用电动机辅助驾驶员操作方向盘的装置,通过电子控制系统调整助力大小,以提供更精准、更省力的操控体验。 本段落基于对EPS系统的原理及助力控制过程的分析,在硬件电路设计方面进行了深入研究,并提出了一种采用受限单极性可逆PWM模式来驱动直流电机的方法;同时探索了在汽车电动助力转向系统中,低压、低速且大电流永磁式无刷直流电机的应用。 一、EPS系统的硬件构成及工作原理 EPS系统主要由电子控制单元(ECU)、扭矩传感器、转角传感器、车速传感器、直流电机等部分组成。其工作过程为:ECU接收来自扭矩和转向角度的信号,结合车速信息计算所需的助力大小,并通过调节电机来提供适当的转向辅助。在低速行驶时,系统将增加助力以减轻驾驶负担;而在高速状态下,则减少助力以确保行车稳定。 二、基于PIC单片机的电子控制单元设计 本段落采用PIC16F877微控制器作为ECU的核心处理器,该芯片具有强大的计算能力和多种内置功能模块。通过处理传感器信号来确定电机所需的电流大小和方向,并利用PWM输出与换向控制驱动直流电动机运转。此外,系统还配备了电流检测器以实现闭环反馈机制,从而保证了系统的稳定运行。 三、直流电机的选择 考虑到EPS的应用需求,文中选用了无刷直流电机作为动力来源,特别是永磁式类型的产品因其优良的性能特性而被优先考虑使用。 四、传感器选择与配置 扭矩和转角传感器均采用意大利BI公司生产的复合型产品,这些设备能够同时提供扭力及方向盘位置数据支持更精准地控制车辆转向操作并实现自动回正功能等复杂逻辑运算需求。 五、电机驱动控制系统设计 文中介绍了一种基于脉宽调制(PWM)技术的H桥电路方案用于精确调节电动机的速度与扭矩输出。特别值得注意的是,受限单极可逆PWM模式被用来避免同一臂开关管同时导通的情况发生,从而提高了整个系统的可靠性和耐用性。 综上所述,汽车电动助力转向系统通过先进的电子控制技术和策略实现了对转向辅助的精细化管理,并显著提升了驾驶体验的安全与舒适度。随着相关技术的发展和完善,预计EPS将越来越广泛地应用于各类车型中,进而促进汽车产业的进步与发展。
  • 蜂巢智能的线线
    优质
    本报告深入探讨了蜂巢智能在自动驾驶领域中的线控转向技术发展路径,涵盖从当前技术水平到未来前瞻性的规划与布局。 线控转向技术(Steer By Wire, SBW)是现代智能底盘中的关键技术之一,在自动驾驶与电动车辆领域有着广阔的应用前景。该系统通过取消传统的机械传动轴,并将方向盘与转向机构之间的连接改为电子信号传输,实现了完全的电气化控制。 根据应用领域的不同,线控转向系统可以分为乘用车和商用车两大类。在乘用车中,系统的组成包括执行机构和手感模拟单元两部分,这两者之间没有物理连接,允许车辆在自动驾驶模式和手动驾驶模式间自由切换。对于不同的前轴载荷情况,执行机构的设计方案可能会有所不同,例如单小齿轮、双小齿轮或滚珠丝杠等配置。而在商用车领域中,同样由执行机构与手感模拟单元构成,但考虑到更大的负载及工作条件差异,则可能采用纯电动循环球、电液循环球或者滚珠丝杆等形式的执行机构。 线控转向技术的发展规划设定了几个关键目标:到2025年时,在自动驾驶跟随性方面达到传统驾驶模式的标准水平,并且在手动驾驶模式下提供6分的手感主观评分;同时,该系统的市场渗透率预计将达到5%,成本控制在4000元以内。此外,还需要满足L3+级自动驾驶的需求及特殊场景无人驾驶的国际领先标准。 对于关键零部件的发展目标而言,在2025年时应当自主设计出适合于L3+级线控转向所需的传感器、控制器、电机和减速机构,并实现小批量试装;而到了2030年,则需要进一步提升手动驾驶模式手感主观评分至8分,市场渗透率提高到30%,并满足L4+级自动驾驶及一般场景无人驾驶的国际领先要求。同时,在此期间内关键零部件的设计能力应达到自主设计水平,并进入小批量试装阶段。 安全性是线控转向系统的重要方面之一,涉及路面干扰抑制、侧风补偿和跑偏补偿等功能的实际实现情况,以及功能安全与网络安全方面的研究开发测试工作。此外,为了提升用户体验性,该技术需要提供高效的转向效率、轻量化设计及个性化设置选项(如路感反馈或可变传动比);并且在低碳性能方面,则需关注转向系统的舒适性和智能化特性。 在线控转向技术研发过程中,各高校、科研机构和汽车制造商共同参与其中。例如合肥工业大学、清华大学以及吉林大学等都在总体目标制定、关键零部件开发及安全性等方面展开专项研究工作,并与蜂巢智能转向公司合作推动技术进步,为实现自动驾驶功能提供核心技术支持。 线控转向技术代表着汽车行业未来的发展趋势,它不仅能够提升自动驾乘的安全性和效率水平,还能优化驾驶员的手感体验。随着该技术的不断成熟和成本降低,在更多车型上的广泛应用将成为可能,并且将为智能汽车领域的创新与发展奠定坚实基础。
  • MATLAP.zip__线速对路感力矩的影响分析
    优质
    本研究探讨了在不同速度下,车速对线控转向系统中驾驶员感知路面信息的路感力矩影响,旨在优化汽车转向性能和驾驶体验。 汽车在转向过程中,转向力矩与转角之间存在一定的关系。此外,转向力矩还受车速的影响。
  • 四轮的PID
    优质
    本研究探讨了在汽车四轮转向系统中应用PID控制技术,以优化车辆操控性和稳定性。通过精确调整参数,实现了更佳的驾驶体验和安全性。 我正在使用MATLAB 2020B进行汽车四轮转向架PID控制的作业,并根据相关文献自己搭建了一个汽车转向PID控制器。该模型是用Simulink在MATLAB 2020B中创建的,其他版本的MATLAB无法打开此文件。目前我的作业已经基本完成。