Advertisement

该系统采用手势控制实现无人机控制,其电路设计方案如下。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该系统依托于Sony Spresense开发板进行技术支持。硬件组成包括:Sony Spresense主板(承担核心功能和扩展能力)× 1,手势传感器× 1,Raspberry Pi 3型号B× 1,以及Parrot AR.Drone× 1。此外,SparkFun按钮开关(尺寸12mm)× 4也一同配备。软件方面,该系统包含Snappy Ubuntu Core和Parrot SDK,并提供一系列应用程序和在线服务。为了辅助制造过程,还配备了通用烙铁和通用热胶枪。Parrot AR.Drone是由法国Parrot公司精心制造的遥控飞行四轮直升机。其控制系统则以移动应用程序为基础构建,旨在实现对无人机的便捷控制。因此,本项目着眼于开发一种基于AR.Drone手势识别的便携式控制系统。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于-
    优质
    本项目旨在开发一套基于手势识别技术的无人机控制电路系统,通过传感器捕捉用户的手势动作,实现对无人机飞行状态的精准控制。 该系统由Sony Spresense开发板提供支持。硬件组件包括:Sony Spresense主板(主要和扩展)1块、手势传感器1个、Raspberry Pi 3型号B 1台以及Parrot AR.Drone 1架,此外还有SparkFun按钮开关12mm规格4枚。 软件应用程序和在线服务方面使用了Snappy Ubuntu Core及Parrot SDK。手动工具和制造机器包括通用烙铁与热胶枪等。 需要特别说明的是,Parrot AR.Drone是由法国公司Parrot生产的遥控飞行四轴直升机。无人机的控制系统基于移动应用程序实现。而本次项目旨在为AR.Drone开发一种便携式手势控制方案。
  • Arduino DIY臂,
    优质
    本项目介绍了一种使用Arduino的手势控制系统来操作DIY机器人手臂的方法,通过简单的电路设计和编程实现对机械臂的动作控制。 MARK 1是一款可编程的Arduino机器人手臂,并且可以通过手势进行控制。它的硬件组件包括:一个Arduino UNO、六个MG996R伺服马达、一个5V电池组、具有I2C接口的PCA9685八通道驱动器,比例阀控制器,两个HC-05蓝牙模块,一块A4988步进电机驱动板,一个NEMA-17步进电机,一块面包板(通用),一个六自由度惯性测量单元(IMU),以及一个Arduino Nano R3、柔性传感器等。此外还需要一些手动工具和一台3D打印机来完成组装。 按照钢铁侠系列的命名规则,每次迭代都会以Mark为前缀进行编号,这款原型将被命名为MARK1。未来还会有更多的版本出现,在保持原始机械臂功能的基础上不断优化改进。 在本教程中,我们将使用机器人手套构建一个由手势控制的六轴机器人手臂。通过模仿自然的手势动作如捏手或向左旋转手腕等来实现对机器人的远程操控,例如可以用来打开/关闭或者左右转动机械臂等操作。实际上这是一项完全手动控制的操作。 MARK 1的主要功能包括: - 具备六个自由度的全方位运动能力 - 可以通过手势进行实时编程和控制 - 支持无线多范围内的遥控操作 - 能够承载600克重量(最大负载为一公斤)。
  • 智能家居线
    优质
    本项目旨在设计一套高效便捷的智能家居无线控制系统电路方案,通过集成多种传感器和智能设备,实现家居环境的自动化管理。 基于GD32的智能家居系统包括了手机APP、网络平台和硬件系统,形成了一个完整的通讯体系。该系统由OLED液晶显示器、蜂鸣器、RGB_LED灯、蓝牙模块以及MQ2烟雾传感器组成,并采用GD32F190小红板作为核心控制单元。 各组件之间的通信如下:OLED通过SPI接口进行数据传输;MQ2传感器的数据采集使用ADC通道;RGB_LED灯光的色彩变化由PWM信号调控;蜂鸣器同样利用PWM信号来产生报警音效。蓝牙模块则采用USART协议实现与手机APP间的无线通讯。 系统功能介绍: 1. 小红板会读取烟雾传感器的数据,并将数据同步至手机应用程序和OLED显示屏上显示。一旦检测到浓度过高的情况,蜂鸣器将会启动警报,同时通过电话及短信方式通知用户。 2. 作为智能家居的一部分,本系统还具备远程控制家电的能力。为此设计了一个全彩的LED灯来模拟家庭电器的状态变化,并可通过手机APP上的滑条调节RGB_LED的颜色和亮度。 此外,该平台支持网络监控功能,允许用户在任何地方通过互联网查看家中环境状态并进行相应的操作调整。
  • 基于ESP32的飞行
    优质
    本项目设计了一种基于ESP32微控制器的无人机飞行控制系统。通过集成传感器和执行器,实现了稳定、高效的飞行性能,适用于多种无人机应用场景。 我们为无人机制造的小型PCB板规格如下:2层FR-4材质、尺寸36.2 x 36.2 mm、厚度1.6 mm;表面处理采用带铅的HASL工艺,绿色阻焊剂及白色丝印。 此电路板用于ESP32和MPU-6050传感器进行轴向控制,并通过PWM信号实现电机控制。
  • 的智能语音
    优质
    本项目设计了一款基于电路方案的智能语音控制机器人,利用先进的语音识别技术实现对机器人的精准操控。通过简洁高效的硬件电路设计,结合智能化软件算法,赋予机器人更加人性化的交互体验,适用于家庭娱乐、教育辅导等多种场景应用。 建立一个语音控制的机器人项目非常有趣!该项目将使用Amazon Echo、Alexa、Heroku、Google Firebase以及Arduino来实现。 硬件组件包括: - Arduino UNO或Genuino UNO × 1 - Amazon Alexa Echo Dot × 1 - SparkFun RedBot套件× 1 - Android设备× 1 - HC-06蓝牙串行模块 × 1 - 德州仪器双H桥电机驱动器L293D × 1 软件应用程序和在线服务包括: - Amazon Alexa技能套件 - Heroku - Google Firebase 语音控制机器人是一个集成的硬件与云端解决方案。主要组成部分如下: 1. **Alexa Skill**:解释用户的语音命令,并将其转换为Google Cloud Messaging消息,部署到Heroku云。 2. **Android应用程序**:从Google Cloud Messaging接收消息并通过蓝牙发送给Arduino。 3. **Arduino**:通过蓝牙读取消息并控制机器人动作。 4. 机器人套件和电路板 - 可以使用任何类型的机器人套件。您需要一个HC-06或HC-05模块用于串行蓝牙通信,以及两个直流电机连接到L293D来驱动机器人的移动。 虽然这不是一项适合初学者的项目,但所有关键组件都是开源的,并且已经准备好了将这些不同的部分组合起来的技术。有关详细教程的信息可以在附件中找到。
  • 刷直流
    优质
    本项目专注于开发高效能、低能耗的无刷直流电机控制系统,提供详细的电路设计方案及其实现方法。 电路板的功能包括: 1. 直流电机H桥驱动; 2. 电流检测与闭环控制; 3. 速度检测与闭环控制; 4. 外力检测与故障停机。
  • 带有遥功能的伺服-
    优质
    本项目旨在设计一种具备远程操控能力的伺服电机控制系统,通过优化电路设计方案,实现对电机运行状态的精准控制和高效管理。 通过这个简单的Arduino项目,您可以使用遥控器控制伺服电机。所需的硬件组件包括:Arduino UNO或Genuino UNO一块、SG90微伺服电机一个、通用红外接收器一个以及JustBoom IR遥控器一个;此外还需要一些跳线(通用)。软件方面,则需要安装并使用Arduino IDE。 该项目将帮助您学习如何通过电视遥控器和IR接收器控制连接到Arduino Uno板上的伺服电机。为了完成此项目,除了上述组件外,您还需准备一块纸板用于固定装置。
  • 刷直流___刷直流__
    优质
    本项目聚焦于无刷直流电机控制系统的开发与优化,涵盖电机驱动、位置检测及智能算法等关键技术。旨在提高无刷电机性能,推动工业自动化和新能源汽车等领域的发展。 无刷直流电机(BLDC)控制系统是现代电动设备中的关键技术之一,在航空航天、汽车工业、机器人及家电产品等领域得到广泛应用。与传统有刷电机相比,无刷直流电机因其高效性、低维护成本、高精度以及长寿命等优势而备受青睐。 该系统的核心在于电子换向机制,它替代了机械换向器和电刷,并通过传感器(通常是霍尔效应传感器)检测转子位置来控制逆变器的开关状态。这种方波或梯形换相策略依据电机转子的位置变化连续调整电流方向,从而实现持续旋转。 《无刷直流电机控制系统》一书由夏长亮撰写,深入探讨了该技术的原理和细节: 1. 电磁理论与工作机理:涵盖电磁力产生、电机性能参数等内容。 2. 控制策略及数学模型:包括磁场定向矢量控制以及P、PI、PID等控制器的应用设计。 3. 霍尔效应传感器及其应用:详细解释了如何利用这些传感器来确定实时转子位置,并处理相关信号。 4. 逆变器与驱动电路的设计优化:介绍逆变器的结构原理及适应不同电机性能需求的方法。 5. 硬件实现要点:包括微控制器选择、接口设计和电源管理等环节的重要性讨论。 6. 实时控制软件开发:讲解RTOS的应用以及编程语言在控制程序中的作用,以确保高效运行。 7. 故障检测与保护措施:提出过载及短路等问题的解决方案,并强调系统稳定性和可靠性的保障策略。 8. 应用案例分析:提供具体场景下的实施步骤解析,帮助读者理解技术的实际应用价值。 9. 高级控制方法介绍:涉及滑模控制、自适应控制等前沿理论的应用以优化动态性能。 这本书是学习和研究无刷直流电机控制系统不可或缺的参考书目。通过系统性地阅读并实践书中内容,可以全面掌握其背后的理论知识与操作技能。
  • 洗衣的仿真
    优质
    本项目专注于洗衣机控制系统的研究,涵盖仿真设计和电路方案制定,旨在优化洗衣机性能及用户体验。 功能描述:通过按键设定洗衣机的工作时间,并用数码管显示工作时间。然后控制两个继电器循环工作状态,模拟洗衣机间歇正反转,即一般情况下正转3秒,停止2秒,接着反转3秒,再停止2秒,如此往复循环。 仿真设计: 软件工程: 根据上述描述进行重写后的内容主要集中在功能和操作流程的说明上。
  • 小型关节
    优质
    本项目专注于小型机器人的关节控制系统的电路设计,旨在通过优化电机驱动与传感器反馈机制,实现高效、精确的动作控制。 本段落提出了一种小型机器人关节控制电路系统的软硬件设计方案。该方案采用意法半导体的32位单片机STM32作为核心处理器,通过CAN总线接收上位机发送的命令及传感器采集的信息,并利用双相DMOS全桥驱动电路芯片A3995来驱动关节电机。系统还采用了PID算法实现对空心杯直流电机进行高精度闭环定位控制。其中关节位置信息由AS5045磁旋转编码器提供,其分辨率达到0.087 9°,确保了关节角度转动误差不超过1°。整个电路板的面积为11.88 cm2,并且信号传输速率达到了1 Mb/s。