Advertisement

分支限界法用于寻找最短路径。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过使用VC6.0,成功地运用了分支限界法来确定两座城市之间满足成本要求的最短路径。该实现方案中,扩展活节点的策略采用了最小堆数据结构进行存储,并提供了详尽的注释以方便理解和维护。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 单源
    优质
    简介:单源最短路径的分支限界法是一种用于寻找加权图中从单一源点到所有其他顶点的最短路径的算法。该方法通过设置上界和下界来优化搜索过程,排除不可能包含最优解的部分搜索空间,从而提高效率。 单源最短路径问题是图论中的一个重要问题,它涉及到从一个指定的起始顶点到所有其他顶点之间的最小距离计算。这里的距离定义为边权重之和。 给定一个带权有向图G=(V,E),其中每个边缘都有整数权重,并且有一个特定起点S(源)。我们的目标是找到从这个起点到达图中每一个其它节点的最短路径长度。 输入格式:首先会给出顶点的数量n,随后是一个nxn矩阵。该矩阵中的-1表示两个顶点之间没有直接连接;其他数字则代表两者之间的距离或权重。 输出格式:程序将按顺序打印出从源到每个非源顶点(共n-1个)的最短路径长度。 分支限界法是一种解决单源最短路径问题的有效策略。它利用优先队列存储待处理节点,并用HeapNode对象记录各节点的信息,包括其编号和到达该节点时已知的最小距离值。 算法步骤如下: 1. 初始化:将起始点加入到优先级队列中,并为所有其他顶点设定初始最短路径长度(无穷大); 2. 探索过程:每次从优先级队列取出具有最小当前最短路径估计值的那个节点,检查其直接邻居。如果发现某个邻居的已知距离大于通过该中间节点到达的距离,则更新它的最短路径,并将其加入到待处理列表中。 3. 重复上述步骤直到所有可能的路线都被考察完毕。 时间复杂度为O(n^2logn),其中n代表顶点的数量;空间需求则主要集中在优先级队列和存储每个顶点已知最小距离值的数据结构上,其规模也为O(n)。 以下是使用C++编写的分支限界法代码实现: ```cpp #include #include using namespace std; #define MAX 9999 // 表示不可达的最大值 #define N 60 // 最大顶点数 int n, dist[N], a[N][N]; // 定义全局变量,存储图的结构和距离信息 class HeapNode { // 自定义HeapNode类用于优先级队列中的节点表示 public: int i; // 节点编号 int length; // 从源到该顶点的距离 HeapNode() {} // 默认构造函数 HeapNode(int ii, int l) {i = ii; length = l;} bool operator<(const HeapNode& node) const { return length > node.length; } // 定义优先级队列排序规则,保证每次弹出的节点是最小距离估计值最小的那个 }; void shorest(int v) { // 主算法函数实现分支限界法的核心逻辑 priority_queue heap; // 初始化一个优先级队列为待处理任务列表 HeapNode enode(v, 0); // 将源节点加入到队列中,初始距离为零 for (int i = 1; i <= n; ++i) dist[i] = MAX; dist[v] = 0; while (!heap.empty()) { // 当待处理任务列表不为空时循环执行 HeapNode enode(heap.top()); heap.pop(); for(int j=1;j<=n;++j) if (a[enode.i][j]dist[enode.i]+ a[enode.i][j]) { dist[j] = dist[enode.i] + a[enode.i][j]; heap.push(HeapNode(j, dist[j])); } } } int main() { cin >> n; // 读取顶点数量 for (int i = 1; i <= n; ++i) for(int j=1;j<=n;++j) if ((cin>>a[i][j]) && a[i][j] == -1) a[i][j]=MAX; shorest(1); // 调用算法函数,参数是源节点编号 for (int i = 2; i <= n ;++i) cout << dist[i] << ; return 0; } ``` 综上所述,单源最短路径问题可以通过分支限界法有效解决。理解这种方法的原理和实现方式有助于我们在实际应用中更好地处理此类图论难题。
  • 求解
    优质
    本研究提出了一种利用分支限界法优化求解最短路径问题的新算法,旨在提高复杂网络中路径规划效率与准确性。 在VC6.0环境下使用分支限界法求解两个城市之间成本符合要求的最短路径问题。本实现采用最小堆来存储和扩展活节点,并且代码包含详细注释以方便理解和维护。
  • 快递的
    优质
    本项目旨在探索并实现一种算法模型,用于在复杂的配送网络中快速准确地找到从发货地点到收货人地址之间的最短路径,提高快递行业的效率与客户满意度。 用最短路径算法来解决快递小哥的最优路径问题,并实现一个完整的工程项目。
  • 解决单源问题
    优质
    本研究采用分支限界算法探讨并实现了解决单源最短路径问题的方法,通过优化搜索过程提高了计算效率。 最近一段时间没上传内容了,主要是因为这些天遇到了一些小事情。这里介绍的是用分支限界法求解单源最短路径问题的算法。
  • 解决单源问题.zip
    优质
    本项目采用分支限界算法高效求解单源最短路径问题。通过构建搜索树并运用优先队列优化节点扩展顺序,能够快速找到图中从起点到各顶点的最短距离。 1. 使用分支限界法求解单源最短路径问题。 2. 提供C++源代码及程序说明文档。 3. 源码包含详细注释。
  • 广度优先搜索
    优质
    本文章介绍了一种基于广度优先搜索算法的策略,旨在有效地寻找图中两点间的最短路径。通过层次化探索节点,此方法能够快速定位目标,并确保找到的路径是最短的解决方案之一。 参考中国大学MOOC上的《计算机算法与程序设计》课程第5.2节内容,实现Python广度优先求最短路径的代码已经调试好了,供大家学习使用!
  • Prime算-
    优质
    简介:Prime算法是一种用于图论中的优化算法,专注于构建连接所有节点的最小生成树,以实现成本最低或效益最高的网络结构。 构建最小生成树的步骤如下: 1. 选择一个顶点v1并将其标记为红色,其余所有顶点保持白色。 2. 在一条一端是红色而另一端是白色的边中找到权值最小的一条,并将这条边及其连接到白节点的部分都标成红色。 3. 按照上述方法继续操作直至所有的顶点都被染红。这时所形成的全部红色边和顶点就构成了该图的最小生成树。 这一过程描述了如何逐步构建一个图的最小生成树。
  • 两点间的算 - MATLAB开发
    优质
    本项目致力于在MATLAB环境中实现和优化寻找两点间最短路径的经典算法,如Dijkstra和A*搜索算法,旨在为复杂网络提供高效的路径规划解决方案。 您可以使用此代码根据视频中的手部动作绘制一条线。它会画出连续两帧之间以及手的中心位置之间的连线。假设您的第一只手的位置是 (x,y),第二只手的位置是 (x1,y1),将这些信息保存在缓冲区中,您就可以绘制这条线了。
  • 迷宫的算解决方案
    优质
    本研究探讨了多种在复杂迷宫中寻找从起点到终点最短路径的有效算法,旨在为迷宫问题提供高效的解决方案。 给出一个迷宫的二维数组示例来求解最短路径问题。例如: ``` int mg[10][10] = { {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 1, 0, 0, 0, 1, 0, 1}, {1, 0, 0, 1, 0, 0, 0, 1, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} }; ``` 这里,数字`0`表示可以通过的路径,而数字`1`则代表障碍物。目标是找到从起点到终点(如果有明确指定的话)或任意两个点之间的最短有效路径长度。