Advertisement

基于14位D/A转换器的高精度可编程电流源

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本项目设计了一种采用14位D/A转换器的高精度可编程电流源,适用于需要精确电流控制的应用场景。 本段落主要介绍了一种基于14位D/A转换器MAX7534的高精度程控电流源的设计与应用。该芯片适用于构建精确的电流源,在电液执行机构智能测量仪等场合中使用特别合适。 首先,我们来了解MAX7534的主要特性:它采用20脚DIP封装,工作电压范围为12~15V,并提供低功耗(静态电流小于20nA)的输出。其数据输入方式是并行双缓冲形式,便于与8位单片机接口。该芯片的输出电流和参考电压的关系可通过以下公式表示: \[ I_{OUT} = \frac{D \times V_{REF}}{2^{14} \times R_0} \] 其中,D代表输入数字量,V_REF是参考电压值,R_0为梯形电阻网络的输出阻抗。 为了将电流信号转换成模拟电压信号,通常需要使用反相放大器。在此基础上可以设计V/I转换器来实现所需的电流范围。例如,在电液执行机构智能测量仪中可能需要生成4~20mA的电流以驱动相应的给定信号;这可以通过调整反馈电阻值来达成。 在硬件配置上,逻辑电源端口应连接至+12~15V电源,数字地和模拟地通常共用同一个接地点。REF引脚需接外部基准参考电压(如10.000V),而RFB是用于反馈的电阻输入端;IOUT则是电流输出端。数据并行口D0至D7负责接收数字量输入,ADDR则用来选择不同的数据位数。 在软件设计方面,则需要依据电液执行机构智能测量仪的具体工作模式(例如步进、任意给定、速度跟踪等)计算出相应的数值,并将其分为高6位和低8位两次送入MAX7534芯片中。启动转换后,就能实现对电流源的精确控制。 在实际应用案例中,如DZ-1型电液执行机构智能测量仪就利用了基于MAX7534设计的高精度程控电流源达到了1.6‰的精度要求,满足系统测试需求,并确保性能测试结果准确可靠。通过这种方式,在以伺服放大器为核心的电液控制结构中实现了对精确给定电流的需求。 综上所述,14位D/A转换芯片MAX7534在设计高精度程控电流源方面扮演了重要角色,借助合理的硬件电路和软件算法能够实现精准的电流输出控制。这使得它适用于各种需要准确提供特定值电流的应用场合中。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 14D/A
    优质
    本项目设计了一种采用14位D/A转换器的高精度可编程电流源,适用于需要精确电流控制的应用场景。 本段落主要介绍了一种基于14位D/A转换器MAX7534的高精度程控电流源的设计与应用。该芯片适用于构建精确的电流源,在电液执行机构智能测量仪等场合中使用特别合适。 首先,我们来了解MAX7534的主要特性:它采用20脚DIP封装,工作电压范围为12~15V,并提供低功耗(静态电流小于20nA)的输出。其数据输入方式是并行双缓冲形式,便于与8位单片机接口。该芯片的输出电流和参考电压的关系可通过以下公式表示: \[ I_{OUT} = \frac{D \times V_{REF}}{2^{14} \times R_0} \] 其中,D代表输入数字量,V_REF是参考电压值,R_0为梯形电阻网络的输出阻抗。 为了将电流信号转换成模拟电压信号,通常需要使用反相放大器。在此基础上可以设计V/I转换器来实现所需的电流范围。例如,在电液执行机构智能测量仪中可能需要生成4~20mA的电流以驱动相应的给定信号;这可以通过调整反馈电阻值来达成。 在硬件配置上,逻辑电源端口应连接至+12~15V电源,数字地和模拟地通常共用同一个接地点。REF引脚需接外部基准参考电压(如10.000V),而RFB是用于反馈的电阻输入端;IOUT则是电流输出端。数据并行口D0至D7负责接收数字量输入,ADDR则用来选择不同的数据位数。 在软件设计方面,则需要依据电液执行机构智能测量仪的具体工作模式(例如步进、任意给定、速度跟踪等)计算出相应的数值,并将其分为高6位和低8位两次送入MAX7534芯片中。启动转换后,就能实现对电流源的精确控制。 在实际应用案例中,如DZ-1型电液执行机构智能测量仪就利用了基于MAX7534设计的高精度程控电流源达到了1.6‰的精度要求,满足系统测试需求,并确保性能测试结果准确可靠。通过这种方式,在以伺服放大器为核心的电液控制结构中实现了对精确给定电流的需求。 综上所述,14位D/A转换芯片MAX7534在设计高精度程控电流源方面扮演了重要角色,借助合理的硬件电路和软件算法能够实现精准的电流输出控制。这使得它适用于各种需要准确提供特定值电流的应用场合中。
  • STM32设计
    优质
    本项目致力于开发一种基于STM32微控制器的高精度可编程电流源。该系统通过精确控制电路参数,实现对输出电流的灵活调节与稳定供应,适用于各种精密仪器和设备的应用需求。 为了满足市场需求,本段落设计了一种高精度程控电流源。该设备的输出电流范围为0至5安培,并且最大功率可达100瓦特。其主要技术参数包括:工作电压为220伏/50赫兹;输出电流可以在0到5安培之间连续调节。
  • 24A/D芯片ADS1211在技术中应用
    优质
    本文介绍了高精度A/D转换器ADS1211在电源技术领域的应用,详细探讨了其性能特点及实际案例,为电源系统的设计提供了新的思路。 摘要:ADS1211是美国Burr-Brown公司制造的一款高精度模数转换芯片。它具备24位的分辨率,并内置自校正∑-Δ转换器、二阶∑-Δ调制器、可编程数字滤波器和微处理器,能够与89C52单片机进行接口连接以测量三相电流和电压。本段落简明扼要地介绍了具有高精度特性的24位A/D芯片ADS1211的结构特点,并通过实际应用案例——即测量三相电压、电流的应用场景,提供了硬件电路图、软件流程以及相关的程序代码。 关键词:单片机 ADS1211 ∑-ΔA/D转换器 寄存器 转换速度 一、ADS1211的结构及特点 ADS1211是一款由美国Burr-Brown公司生产的高精度模数转换芯片,采用的是24脚双列直插式封装形式。
  • 阻型D/A
    优质
    简介:权电阻型D/A转换器是一种将数字信号转化为模拟信号的关键电子元件,其核心原理是通过不同阻值的电阻对应二进制位的重要性来实现电压或电流的连续变化输出。 在第一章中提到过,在一个多位二进制数里,每一位上的1所代表的具体数值被称为这一位的权值。对于一个n位的二进制数而言,从最高有效位(MSB)到最低有效位(LSB),每一位置对应的权依次为。 接下来介绍的是4位权电阻网络D/A转换器的工作原理及其构成:该电路由权电阻网络、四个模拟开关以及一个求和放大器组成。图中S0至S3代表了这四个模拟开关,它们的状态会根据输入代码的值进行变化。当某一位为1时,对应的开关将会连接到参考电压VREF上;而如果这一位是0,则相应的开关将被接地处理。 在这类转换电路里,求和放大器使用了一个负反馈配置下的运算放大器作为核心组件。为了简化分析过程中的计算工作,可以假设这个运放是一个理想化的模型——即其开环增益为无穷大,并且输入端的电流几乎为零(意味着它的输入阻抗是无限大的)。
  • Multisim D/A
    优质
    《Multisim D/A转换器》介绍了一种利用Multisim软件进行D/A(数字/模拟)转换设计与仿真的方法,帮助工程师和学生深入理解D/A转换原理及其应用。 Multisim D/A转换器采用倒T型电阻网络。
  • STC89C52RC单片机D/AA/DC
    优质
    本项目介绍了一种基于STC89C52RC单片机实现数字模拟(D/A)与模拟数字(A/D)转换功能的C语言编程方法,适用于电子测量及控制系统。 本段落介绍了一段基于STC89C52RC单片机的DA/AD转换C程序。该程序使用了I2C通信协议以及数码管显示功能。P0口用于控制数码管的段接口,而P2口的6、7位则用于数码管的段选和位选操作。此外,在程序中定义了一个数据接收缓冲区以实现数据接收,并且还包含一个共阴极数码管从0到9以及消隐编码的相关表格。此程序能够完成数字转换与显示的功能。
  • A/DD/AC和汇版本
    优质
    本书提供了一个详细的指南,讲解了使用C语言和汇编语言实现模数(A/D)和数模(D/A)转换器接口的方法和技术。 通过A/D和D/A转换的C语言和汇编版本实现:调整学习板上的两个电位器对应的两段模拟输入,观察数码管上数字的变化情况;改变D[4]的值以实现模拟输出,并观察学习板上DA处LED亮度的变化。
  • TLC549串行A/D
    优质
    本项目介绍了一种基于TLC549芯片实现的串行模数转换方案。该设计能够高效地将模拟信号转化为数字信号,适用于各种数据采集和处理系统。 基于TLC549的串行AD转换非常实用。TLC549的串行AD转换功能出色。
  • 压/设计双12DAC
    优质
    本文介绍了一种采用双12位数模转换器设计的高精度直流电压和电流发生器,适用于多种电子测量场景。 在现代电子测量与仪表校准领域,高精度直流电压电流源是不可或缺的设备之一。本段落介绍了一种创新设计方法,通过采用双通道12位数字模拟转换器(DAC)构建既具备高精度又拥有宽动态范围的电压和电流源,并且有效降低了成本。 文章指出,在进行仪器校准时通常需要同时满足高精度与大动态范围的要求。该方案利用两个独立的12位DAC,一个负责提供精确度,另一个确保广域覆盖能力,从而巧妙地解决了这一矛盾需求。其中选用LTC1590作为双通道DAC,每个通道都具备12位分辨率的能力以保证输出信号的高度精度。 在系统实现过程中,设计者创建了一个分辨率为0.02mV且范围为0至2.5V的标准电压信号(记作Vstand)。通过放大电路将此基础电压提升五倍后形成一个从0到12.5伏特的直流电源,并使分辨率达到了0.1mV。电流源的设计则基于该标准电压,通过对场效应管栅极电压进行控制来调节漏极电流输出,从而实现精确度在0至20mA范围内的精细调整。 关于生成Vstand的过程,在文中详细描述了如何利用DA1和DA2两个DAC协同工作以达到目标。其中,DA1负责产生粗调电压(标记为V1),而通过衰减处理来自另一个通道的输出后形成细调电压(记作V2)。此外,借助精密数字电位器AD8400进一步调整分辨率水平。经过合理设置比例系数K之后能够实现所需的高精度电压输出。最终,生成的标准电压信号是粗调与精调之和放大五倍的结果,从而确保了动态范围及分辨度的最优化。 硬件实施阶段中采用了高性能运算放大器OPA2277来保障整个系统的准确性和稳定性,并通过单片机程序对AD8400以及LTC1590进行控制以输出设定值对应的电压。电流源部分则依靠电压反馈机制,利用场效应管的漏极电压变化来进行精确的电流调控。 本段落提出的设计方法成功地将高精度与宽动态范围进行了有效结合,并且具有良好的成本效益优势。通过理论分析及硬件测试验证了设计方案的有效性和可行性,为仪表校准及其他需要精密电源的应用领域提供了广阔的发展前景。