Advertisement

CCT:[CVPR 2020] 基于交叉一致性的半监督语义分割训练

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种基于交叉一致性的半监督语义分割方法,在CVPR 2020上发表。该方法利用少量标注数据和大量未标注数据,提高模型在语义分割任务上的性能。 本仓库包含了CVPR 2020论文《Semi-Supervised Semantic Segmentation with Cross-Consistency Training》的官方实现。该方法采用传统的半监督学习一致性训练框架进行语义分割,并扩展至弱监督学习及跨域应用。 文中主要强调了以下几点: 1. 语义分割的一致性训练:观察到对于密集型任务,如语义分割,在隐藏表示上强制执行集群假设比在输入数据上更容易实现。 2. 跨一致性训练(CCT):提出了一种新的半监督语义分割方法——Cross-Consistency Training (CCT),通过定义多种扰动方式,并展示了对编码器输出进行一致性的有效性和优越性,而非直接作用于输入图像。 3. 多域弱标签和像素级标签的应用:所提方案非常简洁灵活,能够轻松扩展至使用来自多个不同领域的图像级别及像素级别的标注信息。 该方法为半监督语义分割提供了新的视角,并展示了其在多种条件下的适用性与灵活性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CCT:[CVPR 2020]
    优质
    本文提出了一种基于交叉一致性的半监督语义分割方法,在CVPR 2020上发表。该方法利用少量标注数据和大量未标注数据,提高模型在语义分割任务上的性能。 本仓库包含了CVPR 2020论文《Semi-Supervised Semantic Segmentation with Cross-Consistency Training》的官方实现。该方法采用传统的半监督学习一致性训练框架进行语义分割,并扩展至弱监督学习及跨域应用。 文中主要强调了以下几点: 1. 语义分割的一致性训练:观察到对于密集型任务,如语义分割,在隐藏表示上强制执行集群假设比在输入数据上更容易实现。 2. 跨一致性训练(CCT):提出了一种新的半监督语义分割方法——Cross-Consistency Training (CCT),通过定义多种扰动方式,并展示了对编码器输出进行一致性的有效性和优越性,而非直接作用于输入图像。 3. 多域弱标签和像素级标签的应用:所提方案非常简洁灵活,能够轻松扩展至使用来自多个不同领域的图像级别及像素级别的标注信息。 该方法为半监督语义分割提供了新的视角,并展示了其在多种条件下的适用性与灵活性。
  • 在前列腺MRI多站点数据集中应用:Cross-Consistency-Prostate
    优质
    Cross-Consistency-Prostate项目采用半监督学习方法和交叉一致性训练技术,在多站点获取的前列腺MRI图像上实现了高效的语义分割,提高了模型泛化能力。 前列腺_CCT 2020年秋季学期项目(COM-508)在EPFL的LTS5进行。本项目的目的是概述并改编作品《半监督语义分割与交叉一致性训练》,作者为Ouali等人,发表于2020年,并使用多站点前列腺MRI数据集重现其论文中多个领域的结果。 使用的数据是通过克服多重挑战而收集到的,包括来自六个不同部位的T2加权磁共振成像(MRI)图像。下载的数据需要在data文件夹下进行整理: - 六个命名不同的文件夹:BIDMC、HK、I2CVB、ISBI、ISBI_15和UCL。 - 每一个子文件夹内包含两个文件夹,分别是Images和Segmentation。 - 这些文件夹中包含了对应站点的.nii格式图像或掩模文件。
  • 转移学习中自适应正则化(CVPR 2021)
    优质
    本文提出了一种新颖的自适应一致性正则化方法,用于改进半监督迁移学习任务中的模型泛化能力,在CVPR 2021上发表。 在本研究中,我们探讨了半监督学习与迁移学习的结合应用,并提出了一种更为实用且竞争力更强的方法。这种方法能够充分利用源域中的预训练模型以及目标领域内带标签及无标签的数据集。为了更好地利用这些资源的价值,我们引入了自适应一致性正则化技术,该技术包括两个互补的部分:一是标记和未标记示例上的自适应知识一致性(AKC),它关注于源模型与目标模型之间的关系;二是针对目标模型的带标签及无标签数据间的表示形式一致性。
  • 学习yolov7源码.zip
    优质
    本资源提供基于半监督学习方法优化的YOLOv7模型源代码及训练配置文件,适用于大规模图像识别任务,提升模型在有限标注数据条件下的性能。 半监督学习是机器学习领域的一种方法,它利用少量标记数据和大量未标记数据来训练模型。在本项目中,我们关注的是如何应用半监督学习来训练Yolov7这一目标检测模型。Yolov7是由Alexey Bochkovskiy开发的最新版本的YOLO(You Only Look Once)算法,其在速度与精度之间取得了良好的平衡,适用于实时目标检测任务。 源码分析: 1. **预处理步骤**:训练前,需要对数据集进行预处理工作,如图像缩放、归一化和光照调整等操作以确保模型能够有效处理输入。同时还需要将标注信息转换为Yolo格式以便于模型理解和使用。 2. **半监督学习框架**:项目中可能采用伪标签(Pseudo-labeling)、一致性正则化(Consistency Regularization)或联合训练(Joint Training)等方法,利用未标记数据生成伪标签并让模型自我学习进而提升性能。 3. **数据集划分**:源码会包括将数据划分为标注和未标注两部分的代码,并对这两类数据进行随机采样或者分批处理的操作逻辑。 4. **模型架构**:Yolov7基于Darknet框架,这是一种轻量级深度学习工具。该项目中定义了网络结构,涵盖卷积层、批量归一化层、激活函数(如Leaky ReLU)和损失函数等元素。 5. **训练过程**:在训练过程中,源码会实现优化器的选择(例如SGD或Adam),设置学习率调度策略(比如多步衰减或者余弦退火)以及完成整个的迭代循环。半监督学习中模型不仅依据标记数据更新权重还会利用伪标签从未标注数据中进行学习。 6. **评估与验证**:源码应包含在验证集上对模型性能的监控代码,例如平均精度(mAP)、召回率和准确度等指标。 7. **保存及加载模型**:为了防止过拟合或中断训练时丢失进度,源码会包括保存权重文件的功能,并且当继续训练时能够重新加载已有的权重。 8. **测试与推理**:完成训练后,项目将提供一个用于在新图像上执行目标检测的模块。这通常涉及前向传播计算以及非极大值抑制(NMS)以减少重复的边界框。 9. **毕业设计相关部分**:作为一项毕业设计任务,该项目可能还包括技术报告撰写、实验方案设计和结果分析等内容,用来展示研究目的、方法论、实验发现及结论。 使用半监督学习训练Yolov7源码.zip是一个结合了深度学习、目标检测与半监督学习的综合性项目。通过深入理解该代码库可以增进对Yolov7工作原理的理解,并掌握在实际问题中应用半监督学习技巧的方法。
  • 学习Yolov7(源码).rar
    优质
    本资源提供了一种利用半监督学习方法改进YOLOv7目标检测算法性能的代码实现。通过结合有标签和无标签数据,有效提升了模型在大规模数据集上的精度与效率,适用于计算机视觉领域的研究者和技术开发者使用。 半监督学习是机器学习领域的一种方法,它利用少量标记数据和大量未标记数据来训练模型。在本场景中,我们关注的是如何应用这种技术到YOLOv7的训练过程中。YOLO(You Only Look Once)是一种实时的目标检测系统,它的最新版本YOLOv7在速度与精度上都有显著提升,并且在不断优化中。 YOLOv7的设计目标是更快、更准确地进行目标检测。它改进了以往YOLO系列的架构,引入了新的网络设计和技术,如Mish激活函数、自适应锚框(Adaptive Anchors)、路径增强(Path Aggregation)等。这些创新有助于提高模型的性能,尤其是在小物体检测和密集目标检测方面。 半监督学习在训练YOLOv7中的应用通常涉及到以下几种策略: 1. **伪标签**:利用预训练的模型对未标记数据进行预测,生成这些数据的假标签。然后,这些假标签被用作训练数据的一部分,帮助模型进一步学习和调整。 2. **联合训练**:结合有标签和无标签数据一起训练模型,使得模型能够从大量的未标记数据中学习到更多的模式和特征。 3. **一致性正则化**:在不同的数据扰动或模型变体下,模型对相同输入的预测应保持一致。这可以鼓励模型学习到更鲁棒的特征,减少过拟合。 4. **分阶段训练**:将模型分为两个或多个部分,每个部分分别在有标签和无标签数据上进行训练,然后交换和融合学到的知识。 5. **时间衰减(Label Smoothing)**:对于伪标签,可以使用时间衰减策略,即随着时间的推移逐渐降低对伪标签的信任度,从而促使模型更加依赖于新产生的预测。 在基于半监督学习训练YOLOv7的源码中,我们可以期待看到上述策略的具体实现细节。这包括数据预处理、模型初始化、损失函数定义、优化器选择、训练循环控制以及伪标签生成和更新机制等。通过阅读和理解这些源代码,开发者可以深入学习如何在实际项目中应用半监督学习来优化目标检测模型。 具体操作时,源码可能包含以下几个关键部分: 1. **数据加载模块**:处理有标签和无标签的数据集,包括读取图像、标注信息以及生成伪标签等。 2. **模型结构**:定义YOLOv7的网络架构,包括卷积层、池化层及激活函数等。 3. **损失函数**:定义用于训练的损失函数,并考虑如何处理伪标签的不确定性问题。 4. **训练循环**:控制训练过程中的前向传播、反向传播和优化步骤,同时可能包含时间衰减与一致性正则化的策略。 5. **验证与评估**:在验证集上定期评估模型性能,使用mAP(平均精度)等指标进行评价。 6. **保存与加载模型**:提供保存模型权重的功能,并支持从现有模型继续训练。 基于半监督学习训练YOLOv7是一种有效的利用大规模未标记数据提升目标检测系统性能的方法。通过深入理解并实践相关的源代码,开发者不仅可以掌握半监督学习的基本原理,还能了解到如何将这些技术应用于实际的深度学习项目中,从而提高目标检测系统的整体性能。
  • 辅助LabelMe标注
    优质
    本研究提出了一种创新性的方法,利用语义分割技术结合远监督学习机制,有效提升了LabelMe平台上的数据标注精度与效率。通过这一方案,能够显著减少人工干预的需求,并提高大规模图像数据库的质量和可用性。 这种自由可以用于在少量训练数据集上进行语义分割的训练,并将训练后的模型应用于未标记的数据预测,形成一种少样本学习方法,以辅助人工标注工作。
  • 图像编码器-解码器方法
    优质
    简介:本文提出了一种基于半监督学习的编码器-解码器框架,专门用于图像语义分割任务。该方法有效结合了标注数据和未标注数据的优势,提高了模型在大规模数据集上的性能和鲁棒性。 基于深度卷积神经网络的图像语义分割方法需要大量像素级标注的数据进行训练,而这些数据的制作过程费时且耗力。本段落提出了一种利用生成对抗网络来实现编码-解码结构的半监督图像语义分割方法,在该方法中,编码器和解码器模块作为生成器,并通过结合标准多分类交叉熵损失与对抗性损失来进行训练。 为了更好地利用浅层网络中的丰富语义信息,本段落将不同尺度下提取的特征输入到分类器当中。这些不同的粒度级别的分类结果经过融合后可以进一步优化目标边界的定义。此外,鉴别器能够识别无标签数据中可信区域,并提供额外监督信号以实现半监督学习。 实验结果显示,在PASCAL VOC 2012和Cityscapes等基准测试集上,所提出的方法优于现有的半监督图像语义分割方法。
  • 文本类中对抗方法
    优质
    本文探讨了在半监督学习框架下使用对抗训练提升文本分类准确性的新方法,通过最小化标签噪声影响来提高模型性能。 基于半监督式文本分类的对抗训练方法以及对抗生成模型的相关论文探讨了如何在数据量有限的情况下提高文本分类的效果。这种方法通过引入对抗机制来增强模型对噪声和未见过的数据的鲁棒性,从而提升机器学习模型的表现力与泛化能力。
  • Unet及TensorRT部署
    优质
    本项目采用Unet模型进行图像语义分割训练,并使用TensorRT实现高效推理部署,适用于快速、准确地处理大规模图像数据。 Unet语义分割训练以及TensorRT部署的相关内容。
  • ResNet FCNVOC2007数据集
    优质
    本研究采用ResNet与FCN结合的方法,在VOC2007数据集上进行语义分割任务的训练,旨在提高图像中不同物体区域的精确识别能力。 在 Google Colab 上已成功验证过。可参考我的博客文章进行学习。使用本程序时,请将数据集放置于 /content/drive/My Drive/VOC2007 文件夹下。声明:本程序借鉴了知乎上的相关文章。