Advertisement

二维可压缩Euler方程求解器-MATLAB欧拉方法代码(CFD项目)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目为计算流体力学(CFD)研究设计,提供了一个基于MATLAB环境下的二维可压缩Euler方程求解器,采用经典的欧拉数值方法进行气体动力学问题的仿真分析。 该存储库包含MATLAB代码,用于使用磁通分解方法求解二维可压缩Euler方程。目前采用Steger-Warming方案(1981年)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Euler-MATLAB(CFD)
    优质
    本项目为计算流体力学(CFD)研究设计,提供了一个基于MATLAB环境下的二维可压缩Euler方程求解器,采用经典的欧拉数值方法进行气体动力学问题的仿真分析。 该存储库包含MATLAB代码,用于使用磁通分解方法求解二维可压缩Euler方程。目前采用Steger-Warming方案(1981年)。
  • Euler_twod_euler_fluxes_v2.zip_ Roe _
    优质
    本资源提供了一种求解二维欧拉方程的方法——Roe格式,并以压缩包形式包含相关代码文件,适用于流体力学中复杂流动问题的数值模拟。 二维欧拉方程是流体力学中的基本方程组,用于描述不可压缩流体的运动。这个压缩包包含了一个名为“twod_euler_fluxes_v2.f90”的源代码文件,这是一个用Fortran语言编写的程序,旨在求解二维欧拉方程的数值模拟。接下来我们将深入了解二维欧拉方程及其计算方法。 二维欧拉方程由五个非线性常微分方程组成: 1. 质量守恒:描述流体质量在时间和空间内的变化。 2. 动量守恒(沿x轴和y轴):描述流体动量在两个方向上的变化。 3. 能量守恒:描述流体内能的变化。 这些方程通常表示为: \[ \frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0 \] \[ \frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u^2 + p) + \frac{\partial}{\partial y}(\rho uv) = 0 \] \[ \frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho uv) + \frac{\partial}{\partial y}(\rho v^2 + p) = 0 \] \[ \frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x}((\rho E + p)u) + \frac{\partial}{\partial y}((\rho E + p)v) = 0 \] 其中,\( \rho \) 是密度,\( u \) 和 \( v \) 分别是沿x轴和y轴的速度分量,\( p \) 表示压力,而 \( E \) 是总能量(动能加内能)。 在“twod_euler_fluxes_v2.f90”程序中,可以使用两种不同的通量计算方法:Roe平均和旋转的RHLL格式。 1. Roe平均:这是一种常用的激波捕捉通量差分格式,它基于Roe平均状态来构建一个近似解,并通过线性化方程组得到特征值与特征向量以形成通量函数。 2. 旋转的RHLL格式:这是Roe和HLL(Harten-Lax-van Leer)方法的一种结合。该方法利用两个估计波速简化了计算,而旋转的RHLL则通过改变这些速度的方向提高对流占主导区域中的稳定性和精度。 数值求解过程中包括离散化、时间推进以及稳定性分析等关键步骤。通常采用有限体积法将连续域分解为多个控制体,并在每个时间步中更新物理量。为了确保数值稳定性,选择合适的时长和空间间隔至关重要,这涉及到Courant-Friedrichs-Lewy (CFL) 条件的使用。 此外,在处理二维欧拉方程的模拟问题时还需要考虑边界条件如无滑移壁、自由流出等的应用。“twod_euler_fluxes_v2.f90”源代码中可能包含这些边界情况下的逻辑处理。该程序涵盖了流体力学的核心内容,包括数值求解技巧以及理论在实际中的应用方法。 通过理解和执行这个程序,我们能够深入学习流体动力学模型的数值模拟技术,并掌握如何将相关理论应用于具体问题之中。
  • Matlab中的-Euler-s-Method:
    优质
    本项目提供了使用MATLAB实现的经典数值分析算法——欧拉方法的代码。通过简单的函数定义和循环结构,可以解决一阶常微分方程初值问题的近似解。 这段文字描述了一个包含使用Euler方法和改进的Euler方法求解一阶常微分方程(ODE)代码的Matlab程序。其中还应用了理查森外推法以提高精度要求。所有代码均采用.m文件格式编写,适用于Matlab环境。
  • 利用MATLAB(Euler)微分
    优质
    本项目运用MATLAB软件及Euler法解决复杂微分方程组问题,旨在探索数值分析在工程与科学计算中的应用,提供精确且高效的解决方案。 在MATLAB中使用欧拉法求解微分方程组的代码片段如下: ```matlab clear; clc; c = 2/3; % 设置常数 c 的值为 2/3 x(1) = 0.1; % 初始条件 x(0) 设定为 0.1 y(1) = 0.3; % 初始条件 y(0) 设定为 0.3 h = 0.05; % 步长 h 设置为 0.05 ```
  • 公式计算圆周率的MATLAB及2DENSE:Euler/Navier-Stokes
    优质
    本项目包含两部分核心内容:一是利用MATLAB编写用于计算圆周率π的欧拉公式算法;二是开发名为2DENSE的软件,专门针对二维空间中Euler和Navier-Stokes方程提供高效准确的数值求解方案。 欧拉公式求长期率的MATLAB代码使用了2DENSE二维Euler/Navier-Stokes方程求解器。2DENSE目前仍在开发中,并将定期更新。这是我们的论文原始代码,采用三阶TVD Runge-Kutta方法进行时间积分。 黎曼问题的解决包括本地Lax-Friedrichs分裂和全球Lax-Friedrichs分裂两种方式;其中斯蒂格·温热使用Roe解算器结合全局Lax-Friedrichs分裂执行特征明智的重构。在重建方面,我们提供了五阶迎风方案、五阶WENO-JS方案、五阶WENO-Z方案以及五阶AdaWENO方案。 预定义测试问题包括等向涡旋对流问题、谢多夫问题(音速激波与接触间断相互作用)、瑞利-泰勒不稳定性问题,Richtmyer-Meshkov 不稳定性问题和双马赫反射。此外还包括冲击/剪切层相互作用及冲击/涡流互动的测试案例。
  • Python问题的:euler
    优质
    本文章介绍如何利用Python编程语言高效地解决数学难题和项目欧拉中的具体问题,并提出一种名为Euler方案的新方法。 欧拉计划旨在激发并挑战对数学世界充满兴趣的人们,在技能提升与乐趣探索方面提供帮助。它是一个在线解题网站,不同于力扣这样的编程刷题平台,欧拉计划更侧重于数学问题的解决,通常需要结合一定的数学知识和编程技巧来编写适当的程序解决问题。 根据我个人的经验,欧拉计划是锻炼个人算法能力和深化数学理解的一个优秀工具。在解答题目时,你不仅可以学习到以前不太熟悉的数学概念,还可以将这些新学到的知识与算法设计结合起来,从而开发出更高效的解决方案。由于网站上的许多问题需要大量时间和精力去查阅相关文献、学习新的数学知识以及编写代码来解决,因此成功解决问题往往能带来更深的满足感。 欧拉计划适合哪些人呢?从涉及的数学领域来看,大多数题目都与数论紧密相连,所以具备一些基本数论背景的知识会很有帮助。
  • 利用MATLAB(Euler)微分组的源
    优质
    本段落提供使用MATLAB编程环境和Euler方法来数值求解微分方程组的源代码。适合学习或研究中需要解决此类问题的人群参考使用。 MATLAB使用欧拉Euler法求解微分方程组的源程序代码可以如下编写: ```matlab % 定义函数文件 euler.m 用于实现 Euler 方法 function [t, y] = euler(f, tspan, y0, h) % f: 微分方程定义的函数句柄,输入为时间向量和状态变量向量; % tspan: 求解的时间范围 [t初值, t终值]; % y0: 初始条件向量; % h: 步长; t = tspan(1):h:tspan(2); n = length(t); y = zeros(n,length(y0)); y(1,:) = y0(:).; % 求解 for i=1:n-1 k=f(t(i),y(i,:)); y(i+1,:) = y(i,:) + h*k; end ``` 以及主程序,例如: ```matlab function main() % 定义微分方程函数句柄 f=@(t,y) [y(2); -sin(y(1))]; % 设置求解的时间范围及初始条件 tspan = [0, 3]; y0=[pi/4;0]; h=0.1; % 步长 % 调用 Euler 法进行数值计算 [t,y] = euler(f,tspan,y0,h); % 显示结果 disp(y); end ``` 以上示例展示了如何在MATLAB中使用Euler方法求解微分方程组。
  • 七阶WENO
    优质
    本项目开发了一种基于七阶WENO(加权本质非振荡)技术的高效数值方法,专门用于求解二维欧拉方程。此求解器能够准确模拟复杂流体动力学现象,适用于航空航天等领域的研究与工程实践。 7阶WENO的双马赫反射求解器使用Fortran编写。该程序允许自由更改网格规模和CFL数,并且数据输出为dat格式,可以直接用tecplot打开。
  • 利用MATLAB(Euler)微分组的源RAR包
    优质
    本RAR包提供了一套基于MATLAB环境下的程序代码,运用欧拉法数值求解各类微分方程组问题。包含详细的文档和示例,适合初学者及科研人员使用。 【达摩老生出品,必属精品】资源名:MATLAB使用欧拉Euler法求解微分方程组 源程序代码.rar 资源类型:matlab项目全套源码 源码说明:全部项目源码都是经过测试校正后百分百成功运行的。如果您下载后遇到问题,请联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
  • 利用MATLAB(Euler)微分组的源.zip
    优质
    本资源提供了一套基于MATLAB编程环境下的源代码,用于通过经典的欧拉(Euler)方法数值求解微分方程组问题。适合学习和研究常微分方程数值解法的学生与科研人员使用。 使用MATLAB中的欧拉法求解微分方程组的源程序代码可以这样编写: ```matlab % 定义函数文件:定义微分方程 function dydt = myODE(t, y) % 微分方程组,例如dy/dt=f(y,t),具体形式根据实际问题而定。 dydt = zeros(2,1); % 初始化为零向量 dydt(1) = y(2); dydt(2) = -y(1)-0.5*y(2)+sin(t); end % 主脚本段落件:使用欧拉法求解微分方程组 h=0.1; % 时间步长 tspan=linspace(0, 4*pi, 40); % 定义时间区间 yinit=[1; -1]; % 初始条件,例如 y(t_0) = [y1(t_0), y2(t_0)] [t,y] = eulerODE(@myODE,tspan,h,yinit); % 函数文件:欧拉法求解器 function [t, y] = eulerODE(f, tspan, h, yinit) nsteps=length(tspan); % 初始化输出数组 t(1)=tspan(1); y(:,1) = yinit; for i=2:nsteps k=f(t(i-1),y(:,i-1)); % 欧拉法公式更新解 t(i)=t(i-1)+h; y(:,i)=y(:,i-1)+h*k; end end % 结果可视化:绘制相图和时间序列图 figure; subplot(2, 1, 1); plot(t,y(1,:)); title(y_1随时间变化曲线); xlabel(t); ylabel(y_1); subplot(2, 1, 2); plot(y(:,[1:end-1]), y(:,2:end), -o); title(相图,即dy/dx的轨迹); xlabel(y_1); ylabel(y_2); ``` 以上代码展示了如何定义微分方程组、使用欧拉法求解以及结果可视化的过程。可以根据具体问题修改`myODE`函数中的微分方程表达式和初始条件等参数。 在实际应用中,可能需要根据具体的数学模型进行调整以适应不同的应用场景需求。