Advertisement

基于视觉的全新Delta机器人控制系统代码。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在大学三年级期间,我参与了一个课程设计项目——基于视觉的新型Delta机器人控制系统。该项目中,上位机利用OpenCV技术对摄像头图像进行处理,并将提取出的坐标信息通过串口实时传输至下位机。下位机则采用了STM32微控制器。由于当时我的经验尚不足,代码编写过程中存在一定的瑕疵,但最终实现的效果可以参考附件中提供的视频资料。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Delta
    优质
    本代码致力于开发一种基于视觉技术的控制系统,用于提升Delta机器人在动态环境中的操作精度与效率。通过优化算法实现精准定位和快速响应。 大三的时候有一个课程设计项目——基于视觉的新型Delta机器人控制系统。在这个项目中,上位机使用OpenCV处理摄像头图像,并通过串口将坐标发送给下位机。下位机采用的是STM32微控制器。由于当时我还年轻,代码写得有些杂乱,但项目的实现效果可以参考附件中的视频。
  • MATLAB在学与算法础.rar_gco_学__MATLAB_
    优质
    本资源深入探讨了MATLAB在机器人学和机器视觉控制领域的应用,涵盖了一系列核心算法的基础知识。适合于研究者、工程师及学生学习使用。包含gco算法等相关内容。 这本书介绍了机器学习及机器视觉的控制算法应用,并探讨了Matlib的相关内容。希望对您有所帮助。
  • 神经网络伺服
    优质
    本研究致力于开发一种基于神经网络的机器人视觉伺服控制系统,通过模拟人眼与大脑协同工作的方式,实现更精准、灵活的物体跟踪和抓取任务。此系统能够显著提升机器人的自主性和适应性,在工业自动化领域展现出广阔的应用前景。 视觉伺服技术可以应用于机器人初始定位自动导引、 自动避障、 轨线跟踪以及运动目标跟踪等多个控制系统领域。传统的视觉伺服系统在运行过程中包括工作空间定位和动力学逆运算两个步骤,需要实时计算视觉雅可比矩阵和机器人逆雅可比矩阵,导致计算量大且系统结构复杂。本段落分析了基于图像的机器人视觉伺服的基本原理,并采用BP神经网络来确定达到指定姿态所需的关节角度值,将视觉信息直接融入到伺服过程中,在确保伺服精度的同时简化了控制算法。文章还通过Puma560工业机器人的模型进行了仿真实验,实验结果验证了该方法的有效性。
  • MATLAB实现
    优质
    本项目采用MATLAB平台,结合Simulink和计算机视觉工具箱,探索了机器人视觉技术及其控制系统的设计与优化方法。 《机器人学入门MATLAB代码实现》是一本包含详细代码教程的工具书。书中提供了丰富的示例和指导,适合初学者学习机器人学相关知识及如何使用MATLAB进行编程实践。
  • 优质
    这段内容讨论了与视觉机器人相关的编程知识和实践技巧,包括图像处理、模式识别以及如何使用代码让机器人理解并互动周围环境。 这是我同学在参加学校机器人比赛时编写的一部分代码,希望能对大家有所帮助。
  • 智能导航开发设计
    优质
    本项目致力于研发一种基于机器视觉技术的智能导航机器人控制系统,旨在实现自主避障、路径规划和精准定位等功能,推动服务型机器人在复杂环境中的广泛应用。 移动机器人是机器人学的重要分支之一,并且随着相关技术的迅速发展,它正向着智能化和多样化方向前进,在各个领域都有广泛应用。于春和采用激光雷达的方式检测道路边界,效果良好;然而在干扰信号较强的情况下,则会影响其检测准确性。付梦印等人提出了一种以踢脚线为参考目标的导航方法,可以提高视觉导航的实时性。 本研究采用了视觉导航方式,使机器人能够在基于结构化道路的环境中实现路径跟踪、停靠指定位置以及提供导游解说等功能,并取得了较好的效果。
  • 比较-
    优质
    本文章对机器视觉系统和人类眼睛的视觉功能进行了详细的对比分析,探讨了两者在成像原理、处理速度及准确性等方面的异同。通过这种比较,旨在加深读者对于机器视觉技术的理解,并为其实际应用提供理论支持。 人的视觉系统与机器视觉系统的对比: - 适应性:人类的视觉系统在复杂多变的环境中表现出很强的适应能力,能够识别各种目标;相比之下,机器视觉系统的适应性较差,在复杂的背景或环境变化中容易受到影响。 - 智能水平:人具有高度智能和逻辑分析及推理的能力,可以总结规律并有效应对变化的目标。尽管现代技术如人工智能和神经网络让机器具备了一定的学习能力,但它们在识别动态目标方面仍不及人类的视觉系统灵活高效。
  • 引导抓取探讨
    优质
    本研究深入探讨了基于视觉引导的抓取机器人控制系统的设计与实现,旨在提高机器人的自主识别、定位及抓取能力,推动智能机器人技术的发展。 本段落的研究内容主要从以下几个方面展开: (1)针对常见的多连杆夹抱式与真空吸附式抓取方式的效率低下和灵活性不足等问题,开发了一套新的抓取机器人系统。该机器人的结构由粗调机构和微调节粘附平台两部分组成,并采用“粗-细”两级调控机制来实现末端粘附装置在空间中的运动调整:通过粗调机构使末端快速移动至目标物体附近;利用微调节平台上多个粘附盘形成的包络面与待抓取的曲面物体表面紧密贴合,从而完成对复杂形状物体的有效抓取。 (2)考虑到多级伺服控制和复杂的交互需求,确定使用上下位机结合开放式控制系统以及基于PC平台的视觉系统。硬件方面包括了控制器板卡、伺服电机、压力传感器、操作开关及工业相机等组件;软件设计则在C++平台上完成,涵盖了初始化设置模块、通信协议处理单元、数据解析与分析功能块和安全保障机制,以实现高效的人机交互界面。 (3)为了确保机器人末端的运动轨迹能够精确地反映各个关节的动作变化关系,基于D-H法建立了机器人的数学模型,并探讨了逆向求解的过程。此外还完成了手眼标定及相机校准实验,确定了机械臂末端与摄像设备之间的位置姿态转换矩阵以及摄像头的具体成像规则。 (4)针对外形不规则且材质不同的大曲率表面物体抓取难题,提出了相应的解决方案。
  • 测量与
    优质
    《机器人视觉的测量与控制》一书聚焦于探讨机器人技术中的视觉感知及其在精准测量和高效控制系统设计中的应用,为读者提供深入理解机器人视觉领域的关键理论和技术。 《机器人视觉测量与控制》第三版,高清扫描版本,带完整书签。
  • MATLAB自由度伺服
    优质
    本研究探讨了利用MATLAB平台开发具有多自由度机器人的视觉伺服控制系统的方法和技术,旨在提升机器人在复杂环境中的自主操作能力。 MATLAB代码实现六自由度机器人的视觉伺服控制,运行前需配置机器人工具箱。