Advertisement

矿井瓦斯爆炸气流危害研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于分析矿井瓦斯爆炸产生的气流对矿山安全的影响,探讨其传播机制及破坏力,并提出预防与应对措施。 本段落运用爆炸气体动力学理论研究了煤矿掘进巷道内瓦斯爆炸冲击气流的衰减规律。研究表明,在瓦斯爆炸后产生的冲击波速度与传播距离成反比,同时该速度还与巷道断面积的平方根呈反向关系,并且正比于初始爆炸能量。基于这些分析结果,我们建立了关于冲击气流伤害程度的模型。通过实验数据和理论计算对比显示,两者高度一致,这表明了所提出的瓦斯爆炸后冲击气流随距离衰减速度公式的合理性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于分析矿井瓦斯爆炸产生的气流对矿山安全的影响,探讨其传播机制及破坏力,并提出预防与应对措施。 本段落运用爆炸气体动力学理论研究了煤矿掘进巷道内瓦斯爆炸冲击气流的衰减规律。研究表明,在瓦斯爆炸后产生的冲击波速度与传播距离成反比,同时该速度还与巷道断面积的平方根呈反向关系,并且正比于初始爆炸能量。基于这些分析结果,我们建立了关于冲击气流伤害程度的模型。通过实验数据和理论计算对比显示,两者高度一致,这表明了所提出的瓦斯爆炸后冲击气流随距离衰减速度公式的合理性。
  • 基于事故树法的煤机理分析
    优质
    本文运用事故树分析方法,系统探讨了煤矿瓦斯爆炸的成因机制,为预防和控制瓦斯爆炸提供了理论依据和技术支持。 瓦斯是煤矿生产过程中的主要安全隐患之一,直接威胁着井下生产和人员的生命财产安全。通过识别危险源、分析瓦斯爆炸的机理,在此基础上建立了煤矿瓦斯爆炸事故树模型,并计算出不同因素对事故发生的影响程度。根据事故树分析结果提出了一系列预防措施,为防治瓦斯事故提供了理论依据。
  • 半封闭管道中与煤尘的耦合试验
    优质
    本研究旨在通过实验分析半封闭管道内瓦斯与煤尘的混合物在不同条件下的耦合爆炸特性,探讨其危险性及防控措施。 瓦斯与煤尘耦合爆炸事故对煤矿工业的健康发展构成严重威胁。为了深入研究半封闭垂直空间内瓦斯和煤尘耦合爆炸的压力特性,我们设计并制造了一个包含爆炸腔、传播管道及配套设备在内的实验系统,并在该系统中收集了压力数据。 通过不同条件下(包括四种不同的煤尘浓度:25g/m³、50g/m³、100g/m³和200g/m³以及四种粒径大小的煤尘颗粒:45μm、75μm、106μm和150μm,且瓦斯体积分数为9%)的实验研究,我们分析了爆炸腔与传播管道中的最大爆炸压力及最大压力上升速率的变化规律。 实验结果显示: - 随着煤尘粒径减小,无论是爆炸腔还是传播管道的最大爆炸压力都会增大,在45μm时达到峰值;同时,这种变化在爆炸腔内表现得更为显著。此外,煤尘的粒径大小与传播管道内的最大压力上升速率呈线性关系。 - 随着煤尘浓度增加,两种空间中的最大爆炸压力和最大压力上升速率呈现先升后降的趋势,在达到峰值前,爆炸腔内的变化幅度大于传播管道。 - 当瓦斯体积分数小于9.5%,存在一个最优的煤尘浓度值使耦合爆炸产生的最大压力峰值出现;一旦超过这个最佳浓度,增加更多的煤尘对增强爆炸威力的作用将逐渐减弱。
  • 后烟浓度与温度的扩散特性
    优质
    本研究探讨了瓦斯爆炸产生的烟流中颗粒物浓度及温度变化规律,并分析其扩散特性,为事故预防和救援提供理论依据。 为了研究瓦斯爆炸后高温烟流及有毒气体的传播规律,本段落采用了数学分析与数值模拟的方法进行了深入探讨。 首先,文章基于模块化思想将烟流区域划分为多个子区域,并针对每个子区推导出了烟流浓度扩散模型。该模型能够描述有害气体(如CH4和CO)在爆炸后的扩散趋势及其浓度变化规律。 其次,通过应用对流换热与热传导理论,研究人员建立了烟流温度传播的数学模型。此模型涵盖了热量传递的各种方式,包括烟流与其周围环境之间的热交换以及内部的导热过程,从而预测了烟流中温度的变化情况。 为了验证这些模型的有效性,研究选取潘集三矿某掘进工作面发生的一次瓦斯爆炸事件作为案例,并利用Fluent软件进行数值模拟。通过该模拟计算得到了CH4和CO浓度及烟温变化的传播规律。 对比一维理论模型与二维数值模拟的结果发现两者基本一致,这表明所建立的数学模型能够准确预测矿井中瓦斯爆炸后烟流扩散的情况。这些研究成果对于提高煤矿安全管理水平、预防事故发生具有重要的实践价值。
  • 基于TDLAS的体浓度监测系统设计
    优质
    本设计提出了一种基于可调谐二极管激光吸收光谱(TDLAS)技术的矿井瓦斯气体浓度监测系统。该系统能够精确、实时地检测矿井内甲烷等有害气体的浓度,有效预防瓦斯爆炸事故的发生,保障煤矿工人的生命安全和生产的安全稳定运行。 为了实现煤矿井下瓦斯气体浓度的准确、快速、实时监测与预警,我们基于可调谐半导体激光吸收光谱学(TDLAS)原理,在甲烷分子1.66μm处特征吸收波长的基础上,结合波长调制和谐波检测技术,设计了一种光谱吸收型瓦斯检测系统。该系统具有光路简单、选择性强及灵敏度高等特点,并通过蓝牙技术和矿用局域网相结合的数据传输结构,实现了局部无线数据传输与地面远程监测的方案。
  • 关于煤智能巡检机器人的与设计.pdf
    优质
    本文档探讨了煤矿井下瓦斯智能巡检机器人的研发过程及设计方案,旨在提升矿井安全监测效率和准确性。 #资源达人分享计划# 这个活动旨在鼓励用户分享各种实用的资源和知识,帮助更多的人获取有价值的信息和技能。参与者可以通过发布文章、教程或经验分享来贡献自己的力量,并与其他成员互动交流,共同成长进步。
  • water_explosion.rar_LS_DYNA_water_explosion_水下__dyna_
    优质
    本资料包包含使用LS-DYNA软件模拟水下爆炸的相关文件。内容涵盖不同情景下的水下爆炸动态过程,适用于工程分析与研究。 LS-DYNA是一款强大的非线性有限元分析软件,在动态响应、碰撞、爆炸及流固耦合等领域有着广泛应用。“explosion_in_water.rar”压缩包内包含了一个关于水下爆炸的LS-DYNA模拟案例,文件名为“explosion_in_water.k”,这是该软件的一个输入文件(K文件)。 水下爆炸是工程研究中的一个重要课题,涉及海军舰艇安全、海洋结构物防护及水下设备的设计。通过其高级流体动力学和结构动力学模型,LS-DYNA能够准确模拟水中爆炸对周围物体的影响。 此K文件可能涵盖以下关键内容: 1. **流固交互(FSI)**:LS-DYNA的FSI模块可处理流体与固体之间的复杂相互作用,如水波如何影响周围的结构。 2. **爆炸模型**:支持多种模型,包括理想气体和TNT等效模型,模拟能量释放及传播过程。 3. **材料特性**:针对水和结构材料使用不同的材料模型(例如不可压缩流体的水、弹塑性或损伤结构),以真实反映物理行为。 4. **网格技术**:支持多种类型的网格(如四面体、六面体等)来适应复杂几何形状及动态变形。 5. **边界条件与初始状态设定**:定义爆炸的位置、时间、能量以及水和结构的初始状态和边界条件。 6. **结果分析工具**:使用LS-DYNA的POST1或POST26后处理软件,评估压力分布、速度、位移及应力应变等参数来了解爆炸对结构的影响。 7. **K文件解析**:包含所有模拟设置与几何信息的ASCII格式输入文件,学习其编写是掌握该工具的关键。 通过这个案例可以深入了解LS-DYNA在水下爆炸模拟中的应用,并优化设计以提高安全性。
  • 实例分析
    优质
    《空气爆炸实例分析》一书深入探讨了空气爆炸事故的原因、机制及预防措施,通过详实案例解析,提供科学的安全防范策略。 关于使用LSDYNA进行空气爆炸的案例K文件分享,希望能帮助你更好地学习该软件。
  • 基于STM32及GSM网络的监测系统
    优质
    本项目设计了一套基于STM32微控制器和GSM通信技术的矿井瓦斯监测系统,能够实时监控并远程传输瓦斯浓度数据,确保矿山安全。 为了构建安全的井下工作环境并防止因瓦斯爆炸导致的人身及经济损失,提出了一种基于STM32和GSM网络检测矿井内瓦斯参数的系统,并通过GSM网络将采集的数据发送到手机上,实现了对井下瓦斯的实时监控。这提高了工人在井下的安全系数。
  • 下作业系统中职业病的模糊风险评估
    优质
    本研究针对煤矿井下作业环境中的主要职业健康威胁,采用模糊数学方法对潜在风险进行量化评估,旨在提出有效的预防和控制策略。 为了全面系统地评估煤矿井下系统的作业环境风险及职业病危害因素,结合其独特的工作条件与特点,并参考相关法律法规以及行业经验,我们识别出了主要的职业病危害因子;运用层次分析法计算各风险因子的权重系数并进行一致性检验;通过模糊数学理论构建了针对井下系统的职业病危害风险评价模型;利用指派法建立了相应的风险分级隶属函数。最后,基于所建立的风险评估模型对某煤矿综采工作面职业病的危害进行了综合评定,并根据评估结果提出了优先采取的防护措施建议,旨在为煤矿企业加强职业卫生管理提供科学依据。