Advertisement

双步相移光栅投影的轮廓测量技术

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了利用双步相移光栅投影技术进行高精度轮廓测量的方法与应用,适用于三维形貌检测等领域。 双三步相移算法能够显著减少数字光栅投影测量轮廓术中的误差。基于理论分析与实验验证,我们提出了相应的双四步、双五步相移算法来改进常用的四步和五步相移方法。 具体而言,通过两次传统相位计算获得两幅主值相位图,并直接融合这两张图像以获取所需的全部测量信息。相比现有的针对两张展开后的相位进行合成的方法,这种方法不仅更为简便而且更加有效。 与双三步算法相比,新的双四步和双五步方案同样实现了简化操作流程并大幅降低了误差水平的目标。值得注意的是,它们只需要投影出两倍于传统方法所需的光栅数量,并且能够保留常用的三步、四步及五步相移技术的固有优势。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了利用双步相移光栅投影技术进行高精度轮廓测量的方法与应用,适用于三维形貌检测等领域。 双三步相移算法能够显著减少数字光栅投影测量轮廓术中的误差。基于理论分析与实验验证,我们提出了相应的双四步、双五步相移算法来改进常用的四步和五步相移方法。 具体而言,通过两次传统相位计算获得两幅主值相位图,并直接融合这两张图像以获取所需的全部测量信息。相比现有的针对两张展开后的相位进行合成的方法,这种方法不仅更为简便而且更加有效。 与双三步算法相比,新的双四步和双五步方案同样实现了简化操作流程并大幅降低了误差水平的目标。值得注意的是,它们只需要投影出两倍于传统方法所需的光栅数量,并且能够保留常用的三步、四步及五步相移技术的固有优势。
  • 优质
    四步相移法测轮廓是一种用于高精度测量物体表面形状的技术。通过依次进行光照、成像、数据采集和计算分析四个步骤,能够高效准确地获取复杂表面的三维信息。此方法广泛应用于精密制造与质量检测领域。 四步相移测轮廓方法包括几个关键步骤来测量物体的三维形状。这种方法利用了光的干涉原理,在不同位置获取多幅图像并通过分析这些图像之间的相位变化来重建物体表面的详细信息。具体来说,整个过程可以分为四个主要阶段:第一步是生成参考条纹图案;第二步是对目标物进行照明并采集数据;第三步是从所获得的数据中提取相位信息;最后一步则是根据提取到的信息计算出物体的三维轮廓。 请注意,“四步相移测轮廓”是一种技术手段,用于精确地测量和重建复杂表面结构。这种方法在光学工程、计算机视觉以及机器人学等领域有着广泛的应用价值。
  • 基于三维精密.zip
    优质
    本资料探讨了利用光栅投影实现高精度三维测量的技术方法,包括原理、实施过程及应用案例分析。适合科研人员和技术爱好者参考学习。 光栅投影三维精密测量技术是一种用于精确获取物体三维形状的方法。通过投射精细的条纹图案并分析其变形来计算空间坐标,这种方法在工业检测、逆向工程等领域有广泛应用。
  • 位解析方法
    优质
    光栅投影的相位解析方法是一篇专注于利用光栅投影技术进行高精度三维测量和表面形貌分析的研究文章。该方法通过解析不同角度下光栅条纹的相移,实现对物体细微特征的有效捕捉与精确重建,在光学工程、生物医学成像及机器人视觉等领域展现出广泛应用前景。 简单地模拟了光栅条纹图像,并实现了相位解算功能,适合初学者参考学习。
  • MATLAB仿真程序及点分析
    优质
    本研究开发了基于MATLAB的相移光栅仿真程序,并对其进行了详细的双相移点分析,以探讨其在光学领域的应用潜力。 巧移光纤布拉格光栅是通过在均匀折射率余弦调制的光栅上,在特定位置引入相移来产生反射谱中的窄窗口。如果有多个相移,则会在反射谱中出现多个缺口。
  • PMP四个阶段
    优质
    简介:相位轮廓技术是项目管理专业人士(PMP)在规划、执行和监控项目时采用的一种关键路径分析工具。该技术通过四个阶段详细描述项目的进度与状态,帮助项目经理精确掌握项目实施情况,及时调整计划以确保项目按时完成。 我编写了一个关于PMP四步轮廓术的模拟仿真实验,内容非常全面,涵盖了条纹的模拟以及相位的展开等方面。这个实验做得相当不错!
  • 优质
    四步移相技术是一种用于信号处理和通信系统中的关键技术,通过分阶段调整信号相位来实现更精确的数据传输与接收。 在四步相移测量程序中,`refphase1` 用于测量参考面并获取相位角,而 `solvephase` 则用于处理待测物体的图像数据,并通过计算恢复出表面形貌信息。该过程包括对单频四步相移图像IM0-3及IMR0-3进行分析。
  • 基于单目面阵机与单个结构仪标定算法研究
    优质
    本研究探讨了在结构光测量系统中采用单目面阵相机和单一投影仪时的标定方法,旨在提高系统的精度和稳定性。通过优化算法,实现了更准确的三维空间重建。 结构光测量技术是一种广泛应用于三维物体形状、尺寸和位置测量的高级成像方法。它结合了光学、图像处理和计算机视觉等多个领域的知识,通过在被测物体上投射特定的光模式,并由相机捕捉这些模式在物体表面的变化来计算出物体的三维信息。在这个过程中,投影仪与相机之间的标定是非常关键的一环,以确保测量结果的高度精确性和准确性。 对于单目面阵相机和单一投影仪组成的系统而言,逆相机法是常用的标定方法之一。这种方法利用已知几何形状的标定板来反向求解出相机和投影仪的具体参数信息。 逆相机法的实施步骤主要包括: 1. **构建标定板**:此过程需要一个包含多个特征点(如棋盘格或圆点阵列)的标准参考平面,这些特征点在真实世界中的位置是已知且精确的。 2. **数据采集**:同时使用相机和投影仪从不同角度捕捉到标定板的图像。每个视角应确保覆盖不同的视场范围,以获取足够的几何信息。 3. **特征检测**:对捕获的数据进行处理后自动识别并匹配出标定板上的关键点位置。 4. **建立几何模型**:依据这些已知的关键点位移情况来构建相机和投影仪之间的几何关系模型。这涉及到求解内参数矩阵(包括镜头畸变等)以及外参数矩阵(相对于参考平面的位置信息)。 5. **优化求解**:通过最小化误差函数进行迭代计算,以使实际观测到的特征点与理论上的投影尽可能吻合。 6. **验证和校正**:使用新获得的标定结果对未知物体进行测试,并比较之前未标定时的数据。这一步骤有助于评估整个系统的准确性和稳定性,并据此做出必要的调整。 结构光测量技术在工业检测、机器人导航、生物医学成像及文化遗产保护等领域有着广泛的应用前景。投影仪和相机之间的精确同步与高质量的参数校正是保证最终三维模型精度的基础条件之一,因此掌握逆相机法标定算法对于实现高精度测量至关重要。此外,在实际操作过程中还需注意控制环境光照强度、选择合适的标定板材质以及确保数据处理步骤的有效性等方面以进一步提升系统的整体性能。
  • 基于FTP三维形貌Guide界面
    优质
    本系统采用FTP轮廓技术开发,提供直观的Guide界面用于操作和分析,实现高效、精确的三维形貌测量。 这是一个FTP轮廓术的指南界面,用户可以选择不同的相位展开算法。
  • OpenCV匹配
    优质
    简介:OpenCV轮廓匹配技术利用图像处理和计算机视觉方法,自动识别并对比不同图像中的物体边界,广泛应用于目标检测、机器人导航等领域。 输入要匹配的图像路径后即可进行模板匹配操作。该图像可能包含多个已知模板,并且这些模板可以是旋转或拉伸过的版本。程序会完成匹配并画出结果图。