Advertisement

蓝光激光二极管

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
蓝光激光二极管是一种能够发射蓝色波段激光的半导体器件,广泛应用于数据存储、投影显示和激光照明等领域。 蓝光二极管激光器是一种能够发射蓝色光线的半导体器件。这种技术在多个领域有着广泛的应用,包括数据存储、全彩显示以及医疗设备等。由于其高效性和稳定性,蓝光二极管激光器成为了现代科技发展中的一个重要组成部分。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    蓝光激光二极管是一种能够发射蓝色波段激光的半导体器件,广泛应用于数据存储、投影显示和激光照明等领域。 蓝光二极管激光器是一种能够发射蓝色光线的半导体器件。这种技术在多个领域有着广泛的应用,包括数据存储、全彩显示以及医疗设备等。由于其高效性和稳定性,蓝光二极管激光器成为了现代科技发展中的一个重要组成部分。
  • 泵浦Cr
    优质
    激光二极管泵浦Cr(如Cr:Forsterite)固态激光器技术,利用高效能激光二极管作为激励源,激发含铬离子的晶体产生特定波长的激光输出。此技术因其高转换效率、窄线宽及良好的频率稳定性,在精密测量和医疗领域展现出广泛应用潜力。 我们对一种由激光二极管(LD)抽运的Cr4+:YAG被动调Q Nd:YVO4全固态激光器进行了实验研究。特别关注了抽运功率、Cr4+:YAG晶体的初始透过率以及其在激光腔中的位置等因素,这些因素如何影响输出脉冲宽度和重复频率等性能指标,并对实验结果进行分析讨论,同时从理论上给出合理的解释。
  • 驱动电路
    优质
    激光二极管驱动电路是一种用于控制和供给激光二极管所需电流与电压的电子装置,广泛应用于光通信、打印、扫描等领域。 ELM185BB 激光二极管驱动器能够实现功率的稳定控制,并配备有PD反馈功能及APC功能。
  • 驱动集成电路
    优质
    激光二极管驱动集成电路是一种专门设计用于控制和驱动激光二极管工作的半导体芯片,广泛应用于光通信、打印等行业。 激光二极管驱动芯片是一种控制激光二极管输出的集成电路。它能提供稳定的电流以确保激光器正常工作,并具备多种功能来保证光输出稳定、可靠且符合相关标准协议。 UX2222是一款支持155Mbps到2.125Gbps数据传输速率的SFF/SFP激光驱动芯片,适用于小型可插拔光纤模块。这种类型的模块广泛应用于高速通信领域。 该芯片的主要特点包括: - 支持+3.3V和+5V电源供电。 - 具备自动功率控制(APC)功能,确保平均光输出稳定不变,在温度变化或激光器寿命期内阈值电流发生变化时仍能保持恒定的输出功率。 - 配备有温度补偿调制功能,可根据需要对随温度变化而改变的消光比进行校正。 - 符合SFP多源协议(MSA)和SFF-8472发射诊断要求。 - 上升和下降时间小于150皮秒,确保高速数据传输中的信号质量不受影响。 - 适用于Fabry-Pérot、分布式反馈(DFB)以及垂直腔面发射激光器(VCSEL)等多种类型的激光器。 芯片的引脚配置与描述如下: - MODTC引脚用于调节调制电流(IMOD)的温度系数,通过在该引脚和地之间接入电阻来设定。 - VCC引脚为芯片提供+3.3V或+5V供电电压。 - INP和INN分别为非反相与反相信号输入端口。 - TX_DISABLE引脚用于控制激光器发射功能的开启/关闭,高电平或悬空时禁用输出;低电平时启用输出。 - PC_MON引脚为光电流监测输出,在外部电阻上形成与监控二极管电流成比例的电压信号。 - BC_MON引脚是偏置电流监测端口,其电流在外部电阻器上产生与偏置电流成正比的电压值。 - SHUTDOWN引脚用于关闭芯片功能,当该引脚被拉至高电平时,整个电路停止工作。 典型的应用电路图展示了如何使用UX2222激光二极管驱动芯片。它包括了必要的电阻和连接器,并说明了如何配置引脚以实现对激光器的精确控制。 在实际应用中,自动功率控制系统(APC)是关键功能之一。该反馈回路通过监控光电二极管来保持平均光输出稳定不变,确保在整个工作寿命期内提供稳定的光线输出。温度补偿机制旨在抵消随温度变化而产生的消光比差异,在不同环境条件下都能维持良好的信号质量。 激光驱动芯片需要准确地控制电流以保证激光器正常运作,并且必须防止超出安全操作范围的情况发生。此外,还应具备故障检测和保护功能,例如通过TX_FAULT输出引脚提供单点锁定机制来帮助系统识别并应对潜在问题。 设计与使用高质量的激光二极管驱动芯片对于构建高性能光通信系统至关重要,它需要与其他高速通信组件(如电信号处理单元、光模块及光纤网络设备)兼容以确保整个链路性能满足数据传输需求。
  • 适用于设备的红外
    优质
    本产品是一款专为激光设备设计的高性能红外光电二极管,具有高灵敏度和快速响应时间,广泛应用于各类激光测距、光通讯及自动化控制领域。 文章主要介绍了一种新型的红外光电二极管,这种二极管对红外光具有很高的灵敏度,在激光装置、激光通讯和雷达系统中有广泛应用。 该文强调了红外光电二极管高灵敏度的特点,并指出其在激光装置中的重要性。通过有效接收并转换信号,这类器件显著提升了相关系统的性能水平。 文中详细描述了这种新型二极管的制造工艺,特别提到磷光体直接涂覆于激光棒表面的过程。由于磷光体具有优异的反射特性,在高达2000℃高温环境下其反射率几乎不变,这保证了红外光电二极管在高功率应用中的稳定性。 此外,文章还列举了一些具体型号的性能参数:F4018型直径为1.25英寸、上升时间为5*10^-10秒且峰值电流可达0.5安培;而尺寸更大的F4000和F4015型(分别为2.25英寸和5英寸)则分别具有高达5安培及30安培的输出能力。这些数据表明,新型红外光电二极管具备强大的电流量以及快速响应时间的特点。 文章还指出了一些潜在挑战,如在极端条件下磷光体反射率可能的变化趋势等,并提及了影响器件性能的因素包括电子穿透深度、热容量和散热效率等。这些问题需要通过进一步研究来解决,以更全面地理解和利用红外光电二极管的优势。 综上所述,新型的红外光电二极管凭借其高灵敏度及大电流输出能力,在激光装置、通讯以及雷达系统中展现出巨大潜力。但为了充分发挥这些器件的功能还需深入探索和理解它们的工作原理及其特性。
  • 基于脉冲源的声成像系统
    优质
    本研究开发了一种基于脉冲激光二极管光源的光声成像系统,利用光学与声学技术结合,实现生物组织内部结构的高分辨率成像。 我们使用了一种具有价格低、体积小、结构紧凑且重复率高的脉冲激光二极管来构建一套C扫描模式的光声成像系统,并通过三维可视化技术获得了被测样品的二维及三维图像。在实验中,该系统采用前向接收方式获取光声信号,其中激光二极管和超声探测器保持相对固定的位置。 实验结果显示,此系统的横向分辨率为0.5毫米,信噪比达到了20.6分贝(dB),A扫描速度为每帧0.16秒。此外,该脉冲激光二极管的单个脉冲能量仅为14微焦耳,并且整个成像设备体积小巧,尺寸约为10厘米×3厘米×3厘米。 鉴于上述特点,这种光声成像系统有望成为一种低成本、实时性高并且便携式的生物组织无损检测工具。
  • 强度的精准调控方法
    优质
    本研究探讨了一种针对激光二极管的先进调控技术,旨在实现对其发光强度的精确调整。通过优化驱动电流与温度控制,提出的方法能够有效提升光电子设备性能和稳定性。 在利用光控制过程的应用场合下,为了长期保持工厂设定的发光强度,需要一个监控并调整供给光发射器件电流的控制系统来维持输出恒定。通过使用简单的运算放大器电路可以实现许多应用中的精确光照调节。即使光源(如LED)随时间老化,其性能下降时,也可以利用控制环路动态地调整驱动电流以保持所需的发光强度稳定。 在很多依赖于光进行过程控制的应用中,确保稳定的光输出是至关重要的。例如,在一些系统里会使用简单的LED或激光二极管作为光源;然而随着时间推移,即使是最初校准良好的设备也会出现性能下降的现象。随着LED的老化,其电流-发光转换效率降低,并导致光照强度减弱。因此需要一个监控和调整机制来确保长期的光输出稳定。 这种配置适用于多种应用场景:包括用于精确测量光线强度的应用、伺服系统中进行精准定位控制以及作为标准光源设备等场合。图1展示了此类系统的结构示意图,其中光电二极管用作检测元件以反馈光照情况并调节驱动电流。 关于硅基光电二极管的特性说明如下:这种器件与普通PN结二极管类似,但其P层厚度经过特别设计以便于捕获特定波长范围内的光。此外,像其他类型的半导体二极管一样,它也有一定的电容效应,并且该值随着施加在其上的反向偏置电压增加而增大——典型容量在2-20皮法(pF)之间。
  • -传感器技术
    优质
    本章节深入探讨光电二极管和光敏二极管的工作原理、特性及其在现代传感器技术中的应用,是理解和设计光学传感系统的重要基础。 光电二极管(光敏二极管)的符号以及其接法如下:
  • MAX3867驱动电路及其应用
    优质
    《MAX3867激光二极管驱动电路及其应用》一书深入探讨了激光二极管驱动技术,详细介绍MAX3867芯片的功能与使用方法,并提供了多种应用场景的实例。 ### MAX3867激光二极管驱动电路及其应用 MAX3867是一款专为高速数据传输设计的单电源激光二极管驱动器,具备2.5Gbps的高速传输速率,广泛应用于SDH(同步数字体系)SONET(同步光网络)系统、双工器以及2.5Gbps的光通信设备。该器件的核心特点是其内部集成的自动功率控制(APC)闭环电路,能够补偿温度变化和芯片老化对激光二极管输出功率的影响,从而保持稳定的输出。 ### 主要性能指标 - **电源电压**:支持从-0.5V到+7.0V的工作范围。 - **偏置电流**:可在-20mA至+150mA之间调节。 - **最大输出电流**:可达+100mA。 - **连续功耗**:在环境温度为85℃时,功率消耗为1354mW。 - **存储和工作温度范围**:存储温度从-65℃到+165℃不等;结温则从-55℃至+150℃。 - **引脚焊接温度**:可以承受短暂的高温(最高达300°C)。 ### 电气性能参数 MAX3867包含多项关键电气性能指标,如调制电流精度、偏置电流精度、输出电压摆幅及上升下降时间等。这些参数决定了其在高速通信中的表现能力。 ### 封装形式与引脚功能 该器件采用48针方形贴片封装(TQFP),每根引线都有特定的功能,包括但不限于控制输入端口、数据输入通道、输出电流调节以及APC相关控制等。 ### 基本工作原理 驱动电路由高速调制驱动部分和自动功率控制系统构成。其中的交流耦合技术能够减少瞬态电压冲击,从而保护激光二极管不受损害;而自动功率控制系统则通过监测光电二极管反馈来调节偏置电流,并确保光输出功率稳定。 ### 其他辅助功能 - **APC开环工作**:当关闭APC时,电流由外部电阻设定。 - **数据输入锁定**:利用LATCH端口控制数据同步方式。 - **使能控制**:允许开启或关闭激光二极管的输出。 - **软启动**:设置导通延迟时间以避免对设备造成损害。 - **APC失效监测**:当自动功率控制系统出现异常时,提供故障指示信号。 - **短路保护**:防止过流导致激光二极管受损。 ### 应用设计 在规划和实施基于MAX3867的光发射器设计过程中,需要考虑平均功率、熄灭率、输出光强度以及监测电流波动等因素。通过预先设定调制与偏置电流及恒定APC功率值,并结合相关曲线图进行配置。 由于其卓越的速度性能、内置自动功率控制功能和丰富的辅助特性,MAX3867已成为高速通信领域中不可或缺的关键组件之一。正确理解并应用这些特点能够帮助设计出高效且稳定的激光二极管驱动系统。
  • 吸收谱中次谐波信号的模拟与分析
    优质
    本研究探讨了在二极管激光吸收光谱技术中的二次谐波信号,通过理论建模和数值仿真对其进行深入分析,旨在提升检测灵敏度和精度。 近年来发展起来的可调谐二极管激光吸收光谱技术(TDLAS)具有高分辨率、高灵敏度及快速测量等特点,在气体检测领域得到了广泛应用。在该技术中,波长调制光谱信号的二次谐波分量通常作为检测信号,用于反演气体浓度信息。 利用MATLAB中的可视化建模仿真平台Simulink,我们模拟了基于TDLAS的波长调制光谱信号,并采用锁相放大原理提取其二次谐波分量。具体而言,通过数字锁相和正交双通道结构实现锁相算法。为了优化参数设置以提高二次谐波信号的质量,我们分析了不同调制系数对二次谐波信号的影响,从而确定最佳的调制系数用于后续的气体浓度测定工作。