Advertisement

基于STM32单片机定时器主从模式生成可调数量PWM脉冲的KEIL项目代码.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一个基于STM32单片机实现可调节数量PWM信号输出的KEIL工程源码。通过利用定时器主从模式,用户可以根据需求灵活调整产生的PWM脉冲数。适合嵌入式开发人员学习和参考。 基于STM32单片机定时器主从方式输出可控个数的PWM脉冲的KEIL工程源码如下: ```c int main(void) { u32 i=0; NVIC_Config(); GPIO_Config(); TIM2_Master__TIM3_Slave_Configuration(10); // 设置TIM2的PWM输出频率为10Hz while(1) { if(TIM2_Pulse_TIM3_Counter_OK == 0) Output_Pulse(10); else if(TIM2_Pulse_TIM3_Counter_OK == 2) { for(i=0; i<10000000; i++); // 延时 TIM2_Pulse_TIM3_Counter_OK = 0; } } } ``` 这段代码主要完成以下功能:初始化NVIC和GPIO,配置TIM2为主定时器、TIM3为从定时器,并设置主定时器的PWM输出频率。在无限循环中根据计数状态决定是否发送脉冲或进行延时处理。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32PWMKEIL.zip
    优质
    本资源提供了一个基于STM32单片机实现可调节数量PWM信号输出的KEIL工程源码。通过利用定时器主从模式,用户可以根据需求灵活调整产生的PWM脉冲数。适合嵌入式开发人员学习和参考。 基于STM32单片机定时器主从方式输出可控个数的PWM脉冲的KEIL工程源码如下: ```c int main(void) { u32 i=0; NVIC_Config(); GPIO_Config(); TIM2_Master__TIM3_Slave_Configuration(10); // 设置TIM2的PWM输出频率为10Hz while(1) { if(TIM2_Pulse_TIM3_Counter_OK == 0) Output_Pulse(10); else if(TIM2_Pulse_TIM3_Counter_OK == 2) { for(i=0; i<10000000; i++); // 延时 TIM2_Pulse_TIM3_Counter_OK = 0; } } } ``` 这段代码主要完成以下功能:初始化NVIC和GPIO,配置TIM2为主定时器、TIM3为从定时器,并设置主定时器的PWM输出频率。在无限循环中根据计数状态决定是否发送脉冲或进行延时处理。
  • PWM
    优质
    本项目介绍了一种创新方法,利用定时器主从模式实现灵活调整PWM脉冲数量的功能,适用于电机控制、LED调光等多种应用场景。 STM32定时器通过主从方式的门控模式可以输出可控数量的PWM脉冲。
  • STM32 PWM
    优质
    本文介绍了如何使用STM32微控制器生成固定数量的PWM(脉宽调制)信号脉冲的方法和步骤。 STM32 微控制器可以使用 PWM 模式输出一定数量的脉冲信号,这是一种常见的应用场景。PWM 是 Pulse Width Modulation 的缩写,即通过调整脉冲宽度来编码信号的一种方法。这种模式常用于控制电机、LED 和继电器等设备。 在 STM32 中有多种 PWM 模式可供选择以满足不同的需求,在这里我们使用定时器的 PWM 模式。在这个模式下,STM32 的定时器会将信号转换成特定宽度的脉冲输出一定数量的脉冲。 为了实现这一功能,代码中采用了 TIM4 和 TIM1 定时器。其中 TIM4 设定为从属模式而TIM1 为主控模式。通过使用 TIM_TimeBaseStructure 结构体来配置定时器的相关参数,包括周期、预分频数和时钟分频等。 在初始化过程中首先对定时器进行复位,并设定其工作参数;同时选择适当的输入触发信号以确保正确的工作流程。 TIM1 的 PWM 初始化同样涉及到了设置相关参数及四个通道的占空比(均为 50%)配置,从而能够输出所需的脉冲信号。这些PWM 输出可以连接到外部设备上进行控制操作如电机、LED 或继电器等。 这种通过 STM32 控制一定数量脉冲的应用场景非常广泛: - **电机控制**:可以通过改变 PWM 的宽度来调整电机的转速和旋转方向。 - **LED 控制**:利用PWM 来调节 LED 亮度或闪烁频率。 - **继电器控制**:使用 PWM 模式可以实现对开关状态的有效管理。 综上所述,STM32 微控制器通过其强大的定时器功能支持了广泛的应用场景,在工业自动化、机器人技术和医疗设备等领域内都发挥着重要作用。
  • /计
    优质
    本项目介绍如何利用单片机内置的定时器或计数器模块来产生精确的脉冲信号,适用于各种控制应用场景。 单片机定时器/计数器是微控制器中的重要组成部分,在电子系统设计尤其是生成各种时序控制信号方面发挥着关键作用。本段落旨在利用单片机的定时器T0来创建一个周期为1秒、脉宽为20毫秒的正脉冲信号,并详细阐述实现这一目标的方法。 首先,我们需要掌握单片机定时器的基本原理和工作模式。通常情况下,这些模式包括正常计数模式、自动重载模式、捕获模式及比较模式等。在本例中,我们将使用自动重载模式来创建周期性时序信号,这种设置便于实现重复的定时需求。 单片机中的定时功能基于内部晶振源工作,在题目提供的12MHz晶振下运行。通过设定预分频系数(例如:12MHz / 128 = 97656Hz),我们可以确定计数器的实际频率,即每秒内可以执行的计数值。当达到预设值时,定时器会触发溢出中断或重置自身的计数以继续运行。 为了产生周期为一秒的脉冲信号,我们需要配置定时器使其在1秒后发生溢出。假设我们使用了128作为分频系数,则每秒钟可以执行97656次操作(即计数值)。因此,要实现一秒钟的时长,需要设定相应的初始值以确保在一秒钟内完成一次完整的循环。 接下来,在脉宽方面,我们需要设置定时器在产生溢出后启动一个子程序来计算20毫秒的时间长度,并在此期间保持P1.0口为高电平。由于每毫秒对应的计数值已知(基于之前设定的频率),我们可以轻松地实现精确到20ms的脉冲宽度。 最后,我们将通过编写汇编语言代码来完成上述功能的具体实施: - 初始化定时器T0,并配置其工作模式和预分频系数。 - 启用中断允许位以激活定时器溢出中断处理程序。 - 在主循环中持续监控定时器状态;当检测到溢出时,更新P1.0口的状态值并重新加载计数值来维持周期性信号的生成。 - 设计和实现一个高效的中断服务子程序用于准确地计算每次溢出的时间间隔,并在达到设定的一秒后停止脉冲输出。 综上所述,通过合理配置单片机定时器/计数器及其相关编程逻辑,我们可以有效地创建所需特性的时序信号。这一过程不仅涉及硬件层面的参数设置和初始化操作,还涵盖软件层面上中断管理与循环控制等复杂机制的应用。这充分展示了微控制器系统设计中软硬件结合的重要性及灵活性。
  • /计
    优质
    本项目介绍如何利用单片机内置的定时器/计数器功能来生成精确的脉冲信号,适用于各种控制和通信应用。 单片机定时器/计数器是微控制器中的重要组成部分,在电子系统设计中起着关键作用,特别是在生成各种时序控制信号方面。本段落的目标是使用单片机的定时器T0来产生一个周期为1秒、脉宽为20毫秒的正脉冲信号,并详细说明实现方法。 首先了解单片机定时器的基本原理至关重要。在微控制器中,定时器通常有几种工作模式:正常计数模式、自动重载模式、捕获模式和比较模式等。本例将使用自动重载模式来方便地实现周期性定时功能。 根据题目中的12MHz晶振频率以及预分频系数(例如128),我们得到的定时器计数频率为97656Hz。这意味着,每秒内有大约97,656次计数值的变化。为了生成一个持续时间为一秒的脉冲信号,我们需要设置合适的初始值以确保在经过精确的一秒钟后发生一次溢出中断。 对于20毫秒宽度的要求,则需要额外设计一段代码来计算并控制输出端口的状态变化:具体来说,在定时器T0每次发生溢出时启动一个新的计数器,并且当该计数值达到与20ms对应的值时,关闭P1.0引脚的高电平状态。 接下来是程序实现步骤: 1. 初始化定时器T0,配置其工作模式和预分频系数。 2. 设置中断允许位以启用溢出中断功能。 3. 在主循环中检查定时器的状态;如果发生溢出,则更新P1.0引脚的输出,并重新加载计数初值。 4. 编写处理函数响应于定时器T0产生的溢出事件,用于控制脉冲信号周期和宽度。 需要注意的是,在编写中断服务程序时应确保不会错过任何关键的时间点。同时要考虑到可能存在的其他中断请求对主控逻辑的影响,并妥善安排它们的优先级关系以保证系统的稳定运行。 最后提及到的一个文件(如5_8)可能是包含具体代码或数据的部分,需要结合上述理论知识来理解并执行该程序以便验证脉冲信号是否符合预期要求。通过这种方式展示了单片机系统设计中硬件与软件相结合的能力,并且强调了定时器/计数器在实现特定时序控制任务中的重要作用。
  • /计
    优质
    本项目介绍如何利用单片机内置的定时器/计数器模块来精确生成各种频率和宽度的脉冲信号,适用于工业控制、传感器驱动等领域。 单片机定时器/计数器是微控制器中的重要组成部分,在电子系统设计中扮演着关键角色,特别是在生成各种时序控制信号方面。本段落的目标是在单片机的定时器T0上产生一个周期为1秒、脉宽为20毫秒的正脉冲信号,并详细讨论如何实现。 首先需要了解单片机定时器的基本原理。通常有几种工作模式:正常计数模式、自动重载模式、捕获模式和比较模式等,本例中将使用自动重载模式,因为它可以方便地实现周期性定时功能。此过程基于内部时钟源如12MHz晶振频率除以预分频系数(例如12MHz / 128 = 97656Hz)得到的计数频率。 为了产生一个周期为1秒的脉冲信号,我们需要设置适当的初值使定时器在经过97656次计数后溢出。同时,在每次定时器溢出时启动另一个用于控制脉宽(20毫秒)的小型计数值,以确保P1.0口输出高电平的时间为20毫秒。 接下来我们编写汇编语言程序实现该功能: - 初始化T0并设置其工作模式和预分频系数。 - 开启定时器溢出中断,并在主循环中处理这些中断事件来控制脉冲信号的开启与关闭状态。 - 在中断服务子程序(ISR)里,对每次计数进行累计直至达到1秒周期时停止输出。 通过上述步骤分析可以看出单片机定时器/计数器是如何用于生成特定波形以及如何利用汇编语言实现复杂的时序控制功能。这不仅涉及到硬件配置,还涉及软件层面的中断处理和循环逻辑设计,展示了微控制器系统开发中软硬结合的重要性与复杂性。
  • STM32控制PWM.rar
    优质
    本资源为一个关于使用STM32微控制器通过编程来精确控制PWM(脉宽调制)信号中的脉冲数量的定时器应用示例。包含详细代码和配置说明,适用于学习和开发基于STM32的嵌入式系统项目。 STM32定时器控制PWM脉冲数量.rar
  • STM32F103PWM
    优质
    本文章介绍如何使用STM32F103微控制器生成特定数量的PWM(脉宽调制)信号脉冲的方法和步骤。通过精确控制硬件定时器,实现灵活的脉冲输出配置。 STM32F103单片机可以通过三种不同的方法实现输出指定脉冲个数的PWM波形。
  • STM32 F103/F407精准输出
    优质
    本文章介绍在STM32 F103/F407微控制器中实现定时器主从模式,以达到高精度脉冲计数和稳定信号输出的目的。 STM32 F103/F407定时器主从模式输出精准脉冲个数的程序是基于库函数实现的。适用于对步进电机进行较为精准的控制,但采用的是开环方式。
  • 89C51程序(汇编)
    优质
    本项目利用89C51单片机编写汇编语言程序,实现定时器产生精确脉冲信号的功能。通过合理配置定时器参数,可灵活控制脉冲宽度和频率。适用于工业自动化、智能家居等领域。 使用汇编语言编写51单片机内部定时器产生脉冲的程序,并附上详细注释以帮助自学。