Advertisement

选择法排序 (20分)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
7-4 选择法排序 (20分) 本题旨在对一组已知的n个整数进行排序,并将这些整数按照降序排列后输出。程序首先需要接收输入,该输入包含一个正整数n,表示待排序整数的个数。随后,程序将读取n个整数,这些整数将以空格分隔的形式呈现。最后,程序应按照从大到小的顺序输出这些整数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 7-4 进行 (20)
    优质
    本节内容聚焦于使用选择法实现数据排序的方法与技巧,详细解析了该算法的工作原理、步骤及应用场景,并通过实例讲解其在实际编程中的应用。 7-4 选择法排序 (20分) 本题要求将给定的n个整数从大到小排序后输出。 输入格式: 第一行给出一个不超过10的正整数n。 第二行给出n个整数,其间以空格隔开。
  • C++示例
    优质
    本示例展示了如何使用C++实现选择排序算法,通过逐步找出数组中的最小元素并将其放到已排序序列的末尾,以此达到整个数组有序排列的目的。 选择排序是一种简单的排序算法,其核心思想是通过重复地找到待排序数组中的最小(或最大)元素,并将其放置到已排序序列的起始位置,从而逐步构建一个有序序列。在C++中,我们可以用函数来实现这个算法。 **选择排序算法的工作原理:** 1. 初始化:从数组的第一个元素开始,假设它是当前未排序部分的最小元素。 2. 搜索:遍历数组的其余部分,找到比当前最小元素更小的元素。 3. 交换:如果找到更小的元素,则更新最小值的位置,并记录该位置。 4. 重复:回到第二步,但搜索范围只限于未排序部分的元素。这个过程会一直持续到整个数组被完全排序。 **选择排序的主要特点包括:** - 它是一种不稳定的算法,在排序过程中可能会改变相同数值元素之间的相对顺序。 - 时间复杂度为O(n^2),其中n是数组中的元素数量,这意味着对于大规模数据集而言效率较低。 - 优点在于交换次数少。在处理已经部分有序的数据时表现得更好。 - 不管输入如何,选择排序总是进行n-1次交换。 **C++中实现的选择排序:** ```cpp #include using namespace std; void SelectSort(int arr[], int length) { for (int i = 0; i < length - 1; ++i) { // 遍历数组 int min = i; for (int j = i + 1; j < length; ++j) { // 寻找最小值 if (arr[j] < arr[min]) min = j; } if (min != i) { int temp = arr[i]; arr[i] = arr[min]; arr[min] = temp; // 如果找到更小的元素,进行交换操作 } } } int main() { int arr[10] = {2, 4, 1, 0, 8, 4, 8, 9, 20, 7}; SelectSort(arr, sizeof(arr) / sizeof(arr[0])); // 调用选择排序函数 for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i) cout << arr[i] << ; cout << endl; return 0; } ``` 在这个实现中,`SelectSort` 函数接收一个整型数组和它的长度作为参数。外层循环用于遍历整个数组,内层循环则负责在未排序部分找到最小值。一旦确定了这个位置,则通过临时变量 `temp` 进行元素交换操作(如果需要的话)。最后,在主函数中创建了一个测试用的数组,并调用了选择排序函数来对其进行排序。 尽管时间复杂度较高,但考虑到其实现简单和特定场景下的实用性,选择排序在某些情况下仍然具有一定的应用价值。
  • 讲解——冒泡、插入
    优质
    本课程详细介绍了三种基本的排序算法:冒泡排序、插入排序和选择排序。通过实例演示了每种算法的工作原理及其在实际编程中的应用,帮助初学者理解并掌握这些核心概念。 在计算机科学领域,排序算法是数据处理的重要组成部分之一,它们用于对一组数据进行排列以便于检索、分析或进一步的处理工作。本段落将重点介绍三种基础的排序算法:冒泡排序、插入排序以及选择排序。 首先来看冒泡排序法。这是一种简单的排序方法,其基本原理是通过反复遍历数组,并在每次遍历时比较相邻元素的位置关系,若顺序错误则交换它们,从而使得未排列的最大值逐次向数组末尾移动。具体实现如下所示: ```python def bubblesort(bubbleList): flag = True n = len(bubbleList) while(n): for i in range(n-1): if bubbleList[i] > bubbleList[i+1]: bubbleList[i], bubbleList[i+1] = bubbleList[i+1], bubbleList[i] flag = False if flag: break n -= 1 return bubbleList ``` 冒泡排序的时间复杂度为O(n^2),其中n代表数组的长度。尽管效率不高,但其优点在于实现简单且稳定,即相等元素在经过排序处理后不会改变它们之间的相对位置。 接下来是插入排序法。它从数组中的第二个数字开始,并将每个新找到的数依次插入到已排好序的部分中去,通过比较前面的数据来确定正确的插入点。其Python代码实现如下: ```python def insertion_sort(Insertion_List): n = len(Insertion_List) for i in range(1, n): key = Insertion_List[i] j = i - 1 while j >= 0 and Insertion_List[j] > key: Insertion_List[j + 1] = Insertion_List[j] j -= 1 Insertion_List[j + 1] = key return Insertion_List ``` 插入排序的时间复杂度同样是O(n^2),但它在处理部分有序的数据集时效率较高,且同样是一种稳定的算法。 最后是选择排序法。它通过找到数组中最小(或最大)的元素,并将其与第一个未排列的位置进行交换,然后重复这个过程直到所有数据都被正确地排好序为止。其Python代码实现如下: ```python def select_sort(select_List): n = len(select_List) for i in range(n): min_num = i for j in range(i+1, n): if select_List[j] < select_List[min_num]: min_num = j select_List[min_num], select_List[i] = select_List[i], select_List[min_num] return select_List ``` 选择排序的时间复杂度同样为O(n^2),但它是不稳定的,即相等元素可能会在排列过程中改变它们的相对位置。尽管如此,在内存限制的情况下由于它只需要一个额外的空间用于临时存储数据,因此具有一定的优势。 总结来说,冒泡排序、插入排序和选择排序都是基于比较的基本算法,并且各自适用于不同的场景:对于小规模的数据集或接近有序的情况,可以考虑使用冒泡排序;而对于部分已经排好序的数组,则推荐采用插入排序法;而当内存资源有限时,可以选择使用空间复杂度为O(1)的选择排序。然而,在面对大量数据处理需求的时候,这些简单的算法通常会被更高效的快速排序、归并排序或堆排序等方法所替代。
  • C语言中的
    优质
    《C语言中的选择排序法》:本篇文章详细介绍了在C语言编程中如何实现选择排序算法。通过逐步讲解和示例代码,帮助读者理解其原理及应用,是学习数据结构与算法的好材料。 选择排序法是C语言中的一个基本排序算法。它的主要思想是在待排序的序列中找到最小的一个元素,并将其与第一个位置上的元素交换;然后在剩下的子序列中继续寻找最小值,依次类推,直到所有元素都被正确地排列好为止。 每次循环时,未排序的部分从当前序列的第一个元素开始向前移动一位。选择排序的时间复杂度为O(n^2),其中n是数组的长度。尽管这种算法不适用于大数据量的情况,但在处理小数据集或者教学场景中是非常有用的。 实现该算法的关键在于寻找最小值的位置,并进行交换操作。在C语言中,可以通过设置两个循环来完成这个过程:外层循环控制遍历次数;内层循环用于查找未排序部分的最小元素并将其与当前子序列的第一个元素互换位置。
  • 单链表的
    优质
    简介:本内容介绍如何在单链表数据结构中实现选择排序算法,详细解析了其操作步骤与优化策略,适用于初学者理解链表和经典排序算法结合的应用。 单链表选择排序算法对于大家很有帮助,包括了带头结点和不带头结点的两种实现方式。
  • 用Python实现
    优质
    本篇文章详细讲解了如何使用Python编程语言来实现经典的选择排序算法。通过实际代码示例和步骤解析,帮助读者深入理解该算法的工作原理及其应用场景。适合初学者学习和参考。 选择排序是一种直观简单的排序算法。其工作原理是:首先在未排序的部分找到最小(或最大)的元素,并将其放到已排序序列的起始位置;接着,在剩余未排序部分中继续寻找最小(或最大)元素,放置到已排序序列末尾。重复这个过程直到所有元素都被正确地排列好。 选择排序的一个主要优点在于它减少了数据移动次数:如果某一个元素已经在它的最终位置上,则无需对其进行任何操作。此外,该算法每次交换都会使至少有一个元素到达其正确的终点位置,在对n个元素进行排序时总共最多需要执行n-1次这样的交换动作。在所有完全依靠通过交换来完成的排序方法中,选择排序被认为是非常有效的一种。 以下是用Python实现的选择排序代码示例: ```python def selection_sort(arr): n = len(arr) for i in range(n): min_idx = i for j in range(i+1, n): if arr[j] < arr[min_idx]: min_idx = j # 交换元素位置 arr[i], arr[min_idx] = arr[min_idx], arr[i] ``` 这段代码定义了一个名为`selection_sort`的函数,输入参数为一个列表(数组)对象。该函数首先确定未排序部分中最小值的位置,并将它与当前已排序序列的第一个元素交换;然后继续从剩余未处理的部分寻找下一个最小值并进行相应的调整直至整个列表被完全有序排列为止。
  • C语言中的
    优质
    本文介绍了C语言中实现的选择排序算法,包括其工作原理、代码示例及复杂度分析。适合编程初学者学习和理解基本的排序技巧。 掌握指针的应用,并学会使用指针进行排序的方法,以此来提高对指针的理解。
  • Java中的:冒泡、和插入
    优质
    本篇文章将介绍Java编程语言中三种基础且重要的排序方法:冒泡排序、选择排序及插入排序。文中详细阐述了每种排序的具体实现方式,同时通过实例代码展示了这些排序算法的应用场景与实际效果,并对它们的性能进行了简要分析,帮助读者快速掌握并灵活运用这些经典排序技巧。 Java 算法:冒泡排序、选择排序和插入排序是三种基本的数组排序算法。 - 冒泡排序通过重复地遍历要排序的列表,依次比较相邻元素并根据需要交换位置来实现。 - 选择排序的工作原理是在未排序序列中找到最小(或最大)元素,存放到已排好序序列开头的位置。然后继续从剩余未排序元素中寻找最小(大)元素除去重复步骤直到所有元素均排序完成。 - 插入排序通过构建有序数组对输入的数据进行逐个插入操作,在每一步将一个待排序的记录按其顺序插入到已排好序的序列中的适当位置,从而逐步扩大有序区。 这些算法各有特点和适用场景。冒泡排序简单易懂但效率较低;选择排序适合较小规模或近乎已经有序的情况;而插入排序对于小数据量或者部分有序的数据集表现良好。
  • Java 应用于十个数字的.rar
    优质
    本资源包含一个Java程序,演示了如何使用选择排序算法对一组十个数字进行排序。适合初学者学习和理解基本的排序逻辑与实现方法。 使用Java对10个数进行排序可以采用选择法。这种方法从后9个数开始比较,找出最小的数与第一个位置的数交换;然后用第二个数与后面的8个数依次比较,并根据需要进行交换,以此类推直到所有数字都被比较和交换完毕。尽管这个方法看起来有些复杂,但其实编写起来比较简单,适合编程新手理解和使用。
  • C语言中的与蛮力
    优质
    本文介绍了在C语言编程中实现选择排序和蛮力算法的方法及其应用。通过具体代码示例讲解了这两种基本算法的工作原理,并分析其性能特点。适合初学者理解和实践。 C语言是一种通用的计算机编程语言,在底层开发中应用广泛。它的设计目的是提供一种简单的方式来编译、处理低级存储器,并生成少量的机器码。