Advertisement

使用Python构建神经网络的完整实现(含代码)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本教程详细介绍如何运用Python语言从零开始构建神经网络,并包含详细的源代码示例。适合编程与机器学习初学者参考实践。 用 Python 从头实现一个神经网络,并包含代码和教程文档,已测试可以稳定运行。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 使Python
    优质
    本教程详细介绍如何运用Python语言从零开始构建神经网络,并包含详细的源代码示例。适合编程与机器学习初学者参考实践。 用 Python 从头实现一个神经网络,并包含代码和教程文档,已测试可以稳定运行。
  • 使Python
    优质
    这段代码提供了一个完整的Python实现的神经网络示例,包括前向传播、反向传播和参数更新等关键步骤,适用于机器学习入门者。 这段文字描述了一个基于Python的完整神经网络结构代码,适用于猫狗识别任务,并具备良好的泛化性能。该代码分为九个部分编写,适合不同技能水平的人使用。
  • 使PythonBP
    优质
    本教程详解如何运用Python语言搭建基于BP算法的神经网络模型,并提供完整代码示例。适合初学者入门深度学习领域。 本段落主要介绍了用Python实现BP神经网络,并提供了详细的示例代码。内容对学习或工作具有参考价值,需要的朋友可以继续阅读了解。
  • 使纯NumPy
    优质
    本篇文章提供了一个利用Python中的NumPy库从头开始构建和实现简单神经网络的完整实例。读者将学习到如何通过矩阵操作来模拟前向传播,并且了解反向传播算法以更新权重,从而优化模型性能。非常适合对深度学习感兴趣的初学者深入理解其核心机制。 本段落主要介绍了使用纯NumPy实现神经网络的示例代码,并认为这些代码非常有用,因此分享给大家参考。希望读者能够跟随文章内容一起学习和探索。
  • C++中BP
    优质
    本资源提供了一个完整的C++程序实现,用于构建和训练BP(反向传播)神经网络。适合初学者学习和理解BP算法在C++中的应用与实践。 BP神经网络的C++完整实现代码包含非常详细的注释,可以直接运行。
  • 使Python从零卷积、LSTM及常规
    优质
    本书详细介绍如何利用Python编程语言从头开始搭建卷积神经网络(CNN)、长短时记忆网络(LSTM)和传统人工神经网络,适合对深度学习感兴趣的读者。 神经网络:用Python语言从零开始实现的卷积神经网络、LSTM神经网络和其他类型的神经网络。
  • 使Python三层BP.zip
    优质
    本资源提供了一份详细的教程和代码示例,指导学习者如何利用Python语言搭建并训练一个具有输入层、隐藏层及输出层的标准三层反向传播(BP)神经网络模型。 利用Python实现三层BP神经网络,并详细解释bp算法在三层神经网络中的应用。源码公开,仅供学习使用。
  • 优质
    本项目提供了一套详细的教程和代码示例,用于指导用户如何从零开始使用Python和深度学习框架(如PyTorch)来构建一个基础的图神经网络模型。适合对图数据处理与分析感兴趣的初学者研究参考。 ### GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1. **图节点预表示**:使用NE框架直接获得全图每个节点的Embedding。 2. **正负样本采样**: - 单个节点作为样本; - 节点对作为样本; 3. **抽取封闭子图**:可以进行类化处理,建立一种通用图数据结构。 4. **子图特征融合**:包括预表示、节点特征、全局特征和边特征的综合。 5. **网络配置**: - 可以是输入输出均为图的网络; - 也可以是图输入分类或聚类结果输出的网络。 6. **训练与测试** ### 主要文件 1. `graph.py`:读入图数据; 2. `embeddings.py`:进行预表示学习; 3. `sample.py`:采样操作; 4. `subgraphs.py/s2vGraph.py`:抽取子图; 5. `batchgraph.py`:融合子图特征; 6. `classifier.py`:配置网络结构; 7. `parameters.py/until.py`: 参数配置和帮助文件。 ### 使用方法 1. 在 `parameters.py` 中配置相关参数(可选,默认值即可)。 2. 在example/文件夹中运行相应的案例文件,包括链接预测、节点状态预测等;以下以链接预测为例: #### 步骤 1:导入配置参数 ```python from parameters import parser, cmd_embed, cmd_opt ``` #### 步骤 2:转换参数设置 ```python args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != auto: args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` #### 步骤 3:读取数据 ```python g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` #### 步骤 4:获取全图节点的Embedding ```python embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings print(node_information) ``` #### 步骤 5:正负样本采样 ```python train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` #### 步骤 6:抽取节点对的封闭子图 ```python net = until.nxG_to_mat(g) train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print(fTrain: {len(train_graphs)}, Test: {len(test_graphs)}) ``` #### 步骤 7:加载网络模型,并配置相关参数 ```python cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split(-)] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` #### 步骤 8:训练和测试 ```python train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print(f\033[92maverage training of epoch {epoch}: loss {avg_loss[0]:.5f} acc {avg_loss[1]:.5f} auc {avg_loss[2]:.5f}\033[0m) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print(f\033[93maverage test of epoch {epoch}: loss {test_loss[0]:.5f} acc {test_loss[1]:.5f} auc {test_loss[2]:.5f}\033[0m) ``` #### 步骤
  • 基于PythonBP
    优质
    本文章介绍了如何使用Python语言来实现BP(反向传播)神经网络,并附带了详细的源代码。适合初学者学习和实践。 用Python实现的机器学习算法包括线性回归、逻辑回归及BP神经网络等多种类型。今天我们将讨论BP神经网络,并介绍一个三层的示例模型。 在该模型中: - 输入层包含三个单元(其中一个为补上的偏置项,通常设为1)。 - 表示第j层中的第i个激励值或称为单元。 - 代表从第j层到第j+1层映射的权重矩阵,即每条边的权重。 因此可以得出以下结论。
  • 使PyTorch.ipynb
    优质
    本教程提供了一个交互式的Jupyter Notebook,详细介绍如何利用PyTorch框架从零开始搭建和训练基本的神经网络模型。 以MNIST数据集为例,详解使用PyTorch搭建神经网络的方法步骤可以参考如下内容:首先介绍如何加载并预处理MNIST数据集;接着构建一个简单的卷积神经网络模型,并利用PyTorch的框架定义前向传播过程;然后设置损失函数和优化器,进行训练循环以迭代地更新权重参数;最后评估模型在测试集上的性能。这一系列步骤涵盖了从数据准备到模型部署的基本流程,在实际应用中可以根据具体需求调整网络结构或超参数配置来实现更好的效果。