Advertisement

基于Hypermesh的新式刮板结构有限元分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究运用HyperMesh软件对新型刮板结构进行详尽的有限元分析,旨在优化设计并提升其机械性能与耐用性。 刮板是刮板输送机的重要零部件之一。本段落介绍了一种新型的刮板结构,并利用Hypermesh软件采用有限元分析方法对改进后的刮板结构进行了刚度与强度分析,结合相关计算结果对比了新旧结构之间的差异,并详细分析了新型刮板结构的优势。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Hypermesh
    优质
    本研究运用HyperMesh软件对新型刮板结构进行详尽的有限元分析,旨在优化设计并提升其机械性能与耐用性。 刮板是刮板输送机的重要零部件之一。本段落介绍了一种新型的刮板结构,并利用Hypermesh软件采用有限元分析方法对改进后的刮板结构进行了刚度与强度分析,结合相关计算结果对比了新旧结构之间的差异,并详细分析了新型刮板结构的优势。
  • MATLAB(梯形)薄壁程序
    优质
    本程序利用MATLAB开发,专注于杆板及梯形板薄壁结构的有限元分析,能够高效准确地进行力学性能评估与设计优化。 针对飞机结构中的杆板薄壁结构研究,本项目使用MATLAB编程,并采用有限元方法进行求解。该代码适用于梯形板的分析。
  • ANSYS平面框架
    优质
    本研究利用ANSYS软件对平面框架结构进行有限元分析,评估其在不同载荷条件下的应力与变形情况,为结构设计提供优化建议。 使用ANSYS进行结构有限元分析的示例及详细过程包括命令流内容,可供参考以进行分析与编程工作。
  • Abaqus橡胶仿真
    优质
    本研究运用Abaqus软件进行橡胶结构件的有限元仿真分析,旨在评估不同工况下的应力分布和变形情况,为设计优化提供依据。 基于ABAQUS的橡胶结构件有限元分析涉及利用该软件的强大功能来模拟和评估橡胶制品在各种条件下的性能表现。通过精确建模材料特性、边界条件以及载荷情况,可以预测产品行为并优化设计以提高其耐用性和可靠性。这种方法对于确保最终产品的质量和安全至关重要,在汽车零件、工业设备和其他需要使用高性能弹性体的应用中尤为关键。
  • 非线性.pdf
    优质
    《非线性结构的有限元分析》一书深入探讨了复杂工程问题中非线性行为的数值模拟方法,重点介绍了有限元技术在解决实际工程挑战中的应用。 《力学的有限元与非线性结构有限元计算》探讨了力学领域中的有限元方法及其在非线性结构分析中的应用。文档内容涵盖了如何使用有限元技术解决复杂的工程问题,特别关注于处理具有高度变形特性的材料和几何形状的问题。
  • MATLAB动力学(源程序)
    优质
    本作品提供了一套基于MATLAB开发的结构动力学有限元分析工具,包含完整的源代码,适用于工程领域中的动态响应仿真与研究。 MATLAB有限元结构动力学分析与工程应用的书本源程序非常适合使用这本书的工程师和同学们。
  • ANSYS Workbench振动筛横梁
    优质
    本研究运用ANSYS Workbench软件对振动筛横梁进行有限元分析,旨在优化其结构设计以提高设备性能和可靠性。 振动筛是煤炭洗选加工过程中的重要机械设备,其中横梁结构作为关键部件,其可靠性直接影响到整个设备的安全运行。通过使用ANSYS Workbench软件对横梁进行了模态分析,获得了前12阶固有频率和振型数据,以确认是否存在共振疲劳的风险;随后又对其开展了响应分析及疲劳寿命评估工作,进一步了解了该结构的动力学特性,并为其预期使用寿命的估算提供了依据。
  • GNLSFEA: 几何非线性
    优质
    本研究提出了一种基于几何非线性理论的壳结构有限元分析方法(GNLSFEA),旨在提高复杂壳体结构在大变形条件下的精确模拟能力,为工程设计提供有力支持。 GNLSFEA是指几何非线性壳有限元分析。
  • 篇——法中模态
    优质
    本篇专注于介绍有限元法在工程结构分析中的应用,重点讲解模态分析理论与实践,帮助读者理解并掌握结构动态特性评估方法。 模态分析是结构分析的重要组成部分,也是其他动力学分析的基础,在有限元分析中有重要作用。
  • ANSYS平台手册——建模与
    优质
    本书为工程师及研究人员提供了一套详尽的操作指南和案例研究,全面介绍如何在ANSYS平台上运用有限元法进行结构建模与分析。 本书以手册的形式全面覆盖有限元结构分析的主要领域,包含60个基本原理、91个典型算例、98种建模操作以及如何使用168条ANSYS主要命令的方法介绍。主要内容涵盖了在ANSYS平台上的基础操作流程:前处理中的模型构建与计算设置,后处理中结果的展示和分析过程,基于APDL(参数化有限元语言)的二次开发及高级建模技术的应用,并深入探讨了结构静态分析以及屈曲分析等复杂问题。 本书的特点在于其原理解释简洁明了、重点突出且易于理解;通过大量算例帮助读者掌握具体操作技巧并加深对理论的理解,内容广泛覆盖各个关键领域。因此,它不仅适合本科生和研究生学习使用,也适用于工程技术人员进行实践指导,在有限元分析与建模方面具有很高的参考价值。