Advertisement

Drv8701双路驱动PCB+原理图+物料清单(智能车驱动)- 飞思卡尔DRV双电机驱动板设计图纸,可直接使用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供飞思卡尔DRV8701双电机驱动板的设计资料,包括详细的PCB布局、电路原理图及物料清单,适用于智能车辆的电机控制应用,便于用户快速搭建和调试。 Drv8701双路驱动PCB、原理图资料及物料清单适用于智能车的电机驱动。该DRV双电机驱动板由飞思卡尔设计,可以直接用于开板使用,并且已经过实测验证可用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Drv8701PCB++)- DRV使
    优质
    本资源提供飞思卡尔DRV8701双电机驱动板的设计资料,包括详细的PCB布局、电路原理图及物料清单,适用于智能车辆的电机控制应用,便于用户快速搭建和调试。 Drv8701双路驱动PCB、原理图资料及物料清单适用于智能车的电机驱动。该DRV双电机驱动板由飞思卡尔设计,可以直接用于开板使用,并且已经过实测验证可用。
  • Drv8701PCB++)- DRV使自绘
    优质
    本项目提供基于飞思卡尔智能车的Drv8701双电机驱动电路设计方案,包括详细PCB布局、原理图及物料清单,方便用户自行绘制与应用。 Drv8701双路驱动PCB、原理图资料及物料清单适用于智能车的DRV双电机驱动板设计。该电路板已经过实际测试并确认可用,可以直接用于开板使用。
  • 系统
    优质
    本项目介绍了一种应用于飞思卡尔智能车竞赛中的创新解决方案——双电机驱动系统。此设计显著提升了车辆的动力性能与操控灵活性,为参赛队伍在比赛中赢得优势提供了关键技术支撑。 飞思卡尔智能车竞赛是一项备受瞩目的科技赛事,旨在推动汽车电子技术的发展与创新。在这样的竞赛中,参赛队伍需要设计并制作出能够自主导航、快速反应的智能车辆。其中,双电机驱动系统是关键组成部分之一,它决定了车辆的运动性能和稳定性。 本段落档中的BTN双电机驱动资料将帮助我们深入了解这一领域的核心技术和实践应用。让我们关注双电机驱动btn的概念:在飞思卡尔智能车中,双电机驱动通常指的是采用两个独立的电机分别控制车辆的左右轮,从而实现更精细的动力分配和更高的操控性能。这两个电机通过按钮(BTN)进行控制,可能是硬件上的物理按键或软件中的虚拟开关,用于实时调整电机的工作状态。 电机驱动部分涉及到的技术包括PWM(脉宽调制)、霍尔传感器的应用以及电机调速策略等。其中,PWM技术允许我们通过改变脉冲宽度来调整电机的平均电压和转速;而霍尔传感器则用来检测电机旋转位置并提供反馈信息,确保精确控制。 原理图展示了电路的工作方式,包括电源、控制器、驱动芯片及各类电子元件的具体布局与连接方法。这有助于理解各组件如何协同工作以及信号在系统内部传递的过程。 PCB(印制电路板)设计方面,则展现了实际硬件的布局方案,涵盖元器件位置和导线布设情况。良好的PCB设计能够确保高效运行、减少干扰并优化散热性能,在飞思卡尔智能车双电机驱动系统的应用中尤为重要,因为它需要处理高速信号传输及大电流负载。 电磁组可能指与电机相关的电磁部件如电磁铁或离合器等设备,这些可以用于增强控制效果,在特定情况下快速断开或连接电机以提高系统响应速度和灵活性。 总之,这份BTN双电机驱动资料包涵盖了飞思卡尔智能车竞赛中双电机驱动系统的各个方面,从控制策略到硬件实现均提供了深入见解。对于参赛团队及对此感兴趣的工程师而言,这些内容将有助于提升车辆性能并取得更佳的比赛成绩。
  • 通道
    优质
    飞思卡尔电机双通道驱动板是一款专为电机控制设计的开发工具,适用于教育、研究及原型制作。它集成高性能处理器和精密驱动电路,便于实现复杂的运动控制算法。 该模块专为智能车竞赛设计,采用双电机驱动配置以满足飞卡四轮车的需求。MOS管选用性能稳定且内阻低的LR7843型号;同时增加了总线驱动芯片74HC08来增强信号传输能力,并起到隔离作用,防止在MOS损坏时过大的灌电流对单片机造成损害。此外,在电机输出端增设了TVS瞬态抑制二极管以抵御换向过程中产生的峰值电压,避免其他芯片受损。电路板设计合理、做工优良且尺寸适中,便于安装和使用,是参加竞赛的理想选择。
  • IR2184-MOS/PCB-方案(恩
    优质
    本项目提供了一套基于恩智浦微控制器的IR2184-MOS双电机驱动板原理图和PCB设计,适用于智能车应用。该电路解决方案高效地实现了对两个直流电机的同时控制与驱动。 本设计分享的是基于恩智浦智能车MOS双电机驱动电路的设计方案。该设计方案采用IR2184驱动芯片,并提供了原理图和PCB-PDF档供网友参考学习。此恩智浦智能车MOS双电机驱动板使用电源芯片MC34063为驱动板提供12V和5V电压,适用于C、D、E型车辆。该设计性能稳定,在正常使用情况下不会烧毁芯片。
  • 浦IR2184-MOS/PCB-方案
    优质
    本产品为基于恩智浦IR2184芯片设计的MOSFET智能车双电机驱动板,包含详细的原理图及PCB布局。此电路设计方案适用于需要高效、精确控制的双电机应用场合。 本设计分享的是基于恩智浦智能车MOS双电机驱动电路的设计方案,采用IR2184驱动芯片,并提供原理图和PCB-PDF档供网友参考学习。该恩智浦智能车MOS双电机驱动板使用电源芯片MC34063为驱动板提供12V和5V电压。此驱动板适用于C车、D车及E车,性能稳定,在正常使用情况下不会烧毁芯片。
  • PCB
    优质
    本项目专注于智能车辆中电机驱动电路的设计与实现,包括详细的电路原理分析和高质量的PCB布局制作,旨在优化电机性能并提高系统稳定性。 电机驱动是指通过电子控制系统来操作电动机的工作过程。这种系统可以根据需要精确控制电机的速度、方向以及转矩输出,广泛应用于工业自动化、家用电器及交通工具等多个领域中。
  • MC33932H桥4A(含PCB源码)-方案
    优质
    本资源提供MC33932双H桥4A电机驱动板详尽设计资料,涵盖原理图、PCB布局和驱动程序代码。适合进行电机控制项目开发的技术爱好者与工程师使用。 MC33932双H桥4A电机驱动板基于飞思卡尔的MC33932设计,能够控制每个单桥高达5.0A峰值电感负载。通过Arduino或Seeeduino板可以驱动两台直流电机,并独立调节每台电机的速度和方向。此外,该设备还可以测量各电机电流吸收量以及其他相关功能。 此电路中的DC-DC转换器支持宽泛的输入电压范围并能为单片机提供5V电源(最大100mA)。因此,只需一个电源即可驱动电逻辑电路与电机运行。MC33932双H桥4A电机驱动板具备以下特性: 工作电压:6V至28V DC-DC输出:5V 100mA @“5V”引脚 每通道连续电流输出能力为2A,峰值可达5A 占空比范围可调(从0%到100%) 具有VPWR或GND短路保护功能 内部恒定关断时间PWM过流限制调节 温度依赖的电流限值降低机制
  • TB6612_ADPCB
    优质
    本资源提供TB6612双电机驱动电路的设计资料,包括AD原理图和PCB布局文件,适合电机控制项目的参考学习。 TB6612双电机驱动板包含AD原理图PCB设计,尺寸为18mm正方形。配备有物料清单(BOM表)和数据手册,并可以直接用于打版生产。 该驱动板采用的TB6612FNG芯片每通道可输出最高达1A连续电流,启动峰值电流分别可达2A/3A(连续脉冲/单脉冲)。支持正转、反转、制动及停止四种电机控制模式。PWM频率最高可达100kHz,并具备待机状态功能。内置低压检测电路和热停机保护机制。 工作温度范围为-20°C至85°C,采用SSOP24小型贴片封装形式。
  • TB6612_ADPCB
    优质
    本资源提供TB6612双电机驱动电路的AD原理图和PCB设计文件,适用于电机控制项目的开发与学习。 TB6612双电机驱动板包含AD原理图PCB设计,尺寸为18mm正方形,并附有物料清单(BOM表)和数据手册。可以直接进行打版制作。 TB6612FNG每通道可输出最高连续驱动电流为1A,启动峰值电流可达2A/3A(连续脉冲/单脉冲)。该芯片支持4种电机控制模式:正转、反转、制动及停止;PWM频率高达100kHz。此外还具有待机状态功能,并内置低压检测电路与热停机保护电路,确保安全运行。工作温度范围为-20°C至85°C,采用SSOP24小型贴片封装。