Advertisement

动态规划是一种解决问题的算法方法。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过对基于NEDC工况的动态规划算法进行优化,从而有效地提升了汽车换档策略。该代码能够在MATLAB环境中顺利运行,并具备极高的应用价值。如果您在使用过程中遇到任何疑问,欢迎随时留言寻求学习和指导。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 利用找零钱
    优质
    本文探讨了如何运用动态规划算法来高效地解决找零钱问题,通过最小化硬币数量实现目标金额的支付。 数组b[J]表示要找零的总数。初始化b[0]=0;对于每个J值,更新b[J]=min{b[J-a[k]]}(1<=k<=n且(J-a[k])>=0)。程序中包含面额为1、3、4和6的硬币,这些数值存储在数组a中。时间复杂度为O(M*N)。输出所需的总硬币数。
  • 使用01背包
    优质
    本文探讨了如何运用动态规划策略来有效地解决经典的01背包问题,通过构建递推关系和状态转移方程,提供了一种高效求解最优解的方法。 01背包问题是背包问题中最简单的一种形式,在这个问题中,有M件物品可以选择放入一个容量为W的背包里。每一件物品有自己的体积(分别为W1, W2至Wn)以及对应的收益值(分别为P1,P2至Pn)。动态规划算法通常用于求解具有最优性质的问题:这些问题可能有许多可行解,每一个解都对应于不同的价值,我们的目标是找到能够带来最大价值的解决方案。
  • 0-1背包
    优质
    本篇文章详细探讨了如何运用动态规划策略来高效地解决经典的0-1背包问题。通过构建递归子结构和优化存储方式,提供了一种系统性的解决方案,适用于资源受限情况下的最优选择问题。 在算法实验中使用动态规划法解决0-1背包问题,并提供了参考源代码。
  • 使用N皇后
    优质
    本文介绍了如何利用动态规划算法来高效地求解经典的N皇后问题,通过优化搜索过程减少计算复杂度。 动态规划 N皇后问题 人工智能作业,在 Visual C++ 6.0 环境下完成。
  • 背包(包括和贪心等)
    优质
    本文章详细介绍了背包问题,并探讨了利用动态规划及贪心算法来解决问题的方法。适合对算法感兴趣的读者参考学习。 这是我自己的实现方法,包含了贪心算法和动态规划等多种解决方案,非常实用。
  • 多阶段
    优质
    本研究探讨了利用动态规划方法解决复杂系统中的多阶段决策问题,旨在通过优化策略提高决策效率与效果。 多阶段决策过程是指一类特殊的活动流程,在时间顺序上可以被分解为若干相互关联的阶段,并且在每个阶段都需要做出相应的决定,整个过程中的所有决定形成一个有序序列。动态规划技术是计算机算法设计方法中较为基础但又相对抽象、难以理解的一种手段。它基于最优原则构建,是一种广泛应用于解决多阶段决策过程中最优化问题的方法,具有较高的难度和技巧性。 通过运用动态规划算法,可以优雅且高效地处理许多贪婪或分治策略无法应对的问题。因此,在很多关键的应用领域中,动态规划技术已成为解决问题的核心方法之一。例如,在0-1背包、图像数据压缩、矩阵链乘法、有向图最短路径计算、无交叉子集选择以及元件折叠和最长公共子序列等具体应用问题上,都可以看到其身影。 此外,在语音识别的研究领域内,动态规划技术所支持的动态时间规整(DTW)算法也取得了显著的成功。特别是在词汇量较小且各个词条不容易混淆的情况下,DTW能够有效应对孤立词识别过程中说话速度不一致的问题。自20世纪60年代末期以来,这一成就推动了语音识别研究领域的蓬勃发展。
  • 运用资源分配
    优质
    本文探讨了利用动态规划策略来优化和解决复杂环境下的资源分配挑战,提供了一种高效、灵活的问题解决方案。 实验课程:算法分析与设计 实验名称:用动态规划法求解资源分配问题(验证型实验) **实验目标** 1. 掌握使用动态规划方法解决实际问题的基本思路。 2. 进一步理解动态规划的本质,巩固设计动态规划算法的步骤。 **实验任务** 1. 设计一个利用动态规划方法解决问题的算法,并给出非形式化的描述。 2. 使用C语言在Windows环境下实现该算法。对于每个实例中的n=30和m=10的情况,计算出10个不同的案例,其中Ci j为随机生成于(0, 10^3)范围内的整数。记录下每一个实验的数据、执行结果(包括最优分配方案及对应的值)以及程序运行时间。 3. 分析算法的时间复杂度和空间复杂度,并结合实际的实验数据进行解释。 **实验设备与环境** - PC - C/C++编程语言 **主要步骤** 1. 根据设定的目标,明确具体任务; 2. 对资源分配问题进行分析,找出计算最优值所需要的递推公式; 3. 设计动态规划算法,并编写程序实现该算法; 4. 编写测试数据并运行程序,记录下结果; 5. 分析时间复杂度和空间复杂度,并解释实验的结果。 **问题描述** 某工厂计划将n台相同的设备分配给m个车间。每个车间获得这些设备后可以为国家提供一定的利润Ci j(其中i表示第j号车间可以获得的设备数量,1≤i≤n, 1≤j≤m)。如何进行分配才能使总的盈利最大? **算法基本思想** 该问题是一个简单的资源优化配置问题,由于具有明显的最优子结构特性,可以使用动态规划方法来解决。定义状态量f[i][j]为用i台设备给前j个车间时的最大利润,则有递推关系式:f[i][j]=max{ f[k][j-1]+c[i-k][j]}, 0<=k<=i。 同时,p[i][j]表示最优解中第j号车间使用的设备数量为 i-p[i][j]。根据上述信息可以反向追踪得到具体的分配方案。 程序实现时采用顺推策略:先遍历每个可能的车间数;再考虑每种情况下的设备总数;最后确定状态转移过程中所需的中间变量,通过三个嵌套循环即可完成计算。 时间复杂度为O(n^2*m),空间复杂度则为O(n*m)。如果只需求解最大利润而不需获得具体的分配方案,则可以减少一维的状态量存储,将空间复杂度优化至 O(n)。
  • 利用0/1背包
    优质
    本文探讨了如何运用动态规划算法有效求解经典的0/1背包问题。通过构建递推关系,实现资源的最佳分配策略,展示了该技术在优化决策中的强大应用潜力。 这段文字描述了一个使用C++语言编写的程序,在VC++6.0环境下运行,采用动态规划方法解决0/1背包问题。代码包含非常详细的注释,是学习算法的良好参考材料。
  • 利用电路排线
    优质
    本研究运用动态规划技术优化电路设计中的布线路径,旨在减少线路长度和交叉点数量,提高电子产品的性能与制造效率。 动态规划可以用来解决电路排线问题。这个问题可以通过分析电路中的各个节点和线路,并利用动态规划的方法来寻找最优的布线方案。这种方法能够有效地减少电线长度或者优化其他相关目标,比如成本或空间使用效率等。通过建立适当的递推关系式并计算最优解,我们可以得到一个高效的解决方案以应对复杂的电路排线挑战。