Advertisement

在矩阵的特征值分解中,矩阵与数值分析教材相关。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在矩阵的Schur分解过程中,由于矩阵A与矩阵R之间存在酉相似性,它们必然共享相同的特征值。鉴于上三角矩阵的特征值恰好等于其对角元,因此Schur定理可以被表达为:任何一个n阶方阵都与一个具有其特征值为对角元的上三角矩阵酉相似。 2. 通常情况下,我们称这个具有特定特征值的上三角矩阵R为矩阵A的Schur标准型,并且在理论层面,我们已经成功地获得了关于矩阵特征值的关键信息。 然而,由于特征值的计算通常需要借助迭代法,并且在有限步内精确获得这些值往往具有挑战性。(即 A = URUH, 其中 U 和 H 是酉矩阵)。 Schur定理的相关注意事项也值得关注。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 方法
    优质
    本文探讨了复数矩阵的特征值分解理论与算法,介绍了几种高效的求解方法及其在工程实践中的应用价值。 复数矩阵的特征值分解通过使用GSL科学计算函数库,在很大程度上减少了特征值分解的时间。
  • Schur课件——课程
    优质
    本课件为《矩阵与数值分析》课程设计,专注于讲解矩阵的Schur分解理论及其应用,旨在帮助学生深入理解线性代数核心概念和算法。 在矩阵的Schur分解过程中,由于A与R是酉相似的关系,它们具有相同的特征值。而上三角矩阵的特征值就是其对角线上的元素,因此可以得出结论:任意n阶方阵可以通过酉变换得到一个以其特征值为对角元的上三角矩阵R。 通常称这个结果中的R为A的Schur标准型,在理论上我们得到了关于矩阵特征值的信息。然而,实际计算特征值时往往需要使用迭代方法,并且在有限步骤内无法准确地得出具体数值。
  • 向量
    优质
    本文章讲解了如何计算矩阵的特征值和特征向量的方法及步骤,并探讨其在数学领域的应用价值。 不需要通过求解方程来获得特征值和特征向量。
  • 协方差向量——主成
    优质
    本篇文章探讨了如何通过计算协方差矩阵的特征值和特征向量来进行主成分分析(PCA),以实现数据降维的目的,揭示数据的主要结构。 计算协方差矩阵的特征向量和特征值:求得协方差矩阵C的特征向量以及对应的特征值。这些特征矢量构成模式矢量,并根据得到的特征值大小进行排序,以确定它们的重要性级别。然后依据调整后的顺序对相应的特征向量重新排列。
  • 对称SVD:适用于对称及任意奇异-MATLAB开发
    优质
    本项目提供MATLAB函数,实现对称矩阵的特征值分解和任意矩阵的奇异值分解(SVD),便于深入理解线性代数中的核心概念并应用于实际问题。 此提交包含用于通过基于频谱分而治之的高效稳定算法计算对称矩阵 (QDWHEIG.M) 的特征值分解和奇异值分解 (QDWHSVD.M) 的函数。 计算结果通常比 MATLAB 内置函数 EIG.M 和 SVD.M 给出的结果更准确。 函数 TEST.M 运行代码的简单测试。 有关底层算法的详细信息可以在 Y. Nakatsukasa 和 NJ Higham 的论文《用于对称特征值分解和 SVD 的稳定有效的谱分治算法》中找到,该论文于2012年5月发布。
  • 利用QR计算
    优质
    本文探讨了通过QR算法求解任意复数或实数方阵特征值的方法。介绍了QR分解的基本原理及其在迭代过程中收敛至对角矩阵的应用,进而简化特征值问题的求解过程。 MATLAB编程使用QR分解方法可以求解实矩阵和复矩阵的特征值。
  • 利用QR计算向量
    优质
    本文介绍了运用QR算法求解任意复数方阵特征值及特征向量的方法,通过迭代过程实现矩阵对角化。 颜庆津版数值分析编程作业使用C语言(少量C++语法)实现矩阵的QR分解法迭代求解全部复数格式特征值。首先对矩阵进行拟上三角化处理,然后通过迭代方法计算出所有特征值,并利用列主元素高斯消元法求得实特征值对应的特征向量。
  • MATLAB程序享:求源代码-MATLAB求源程序代码.rar
    优质
    本资源提供一份用于求解矩阵特征值的MATLAB源代码。通过该代码,用户能够方便地计算任意给定矩阵的所有特征值,适用于科研、工程等领域的数学建模与分析工作。 分享MATLAB程序用于求解矩阵的特征值:源代码见附件《MATLAB求解矩阵的特征值 源程序代码.rar》。如果下载遇到问题,请联系我进行帮助。
  • 病态(Hilbert)求方法探讨
    优质
    本研究聚焦于数值分析中病态矩阵求解问题,特别讨论了Hilberg矩阵。文章深入探讨了几种有效的求解策略和技巧,并对其应用前景进行了展望。 使用Matlab语言编程,分别采用Gauss消去法、Jacobi迭代法、Gauss-Seidel迭代法、SOR迭代法以及共轭梯度法对Hilbert矩阵进行求解,并绘制相关曲线。
  • 利用QR计算所有
    优质
    本文介绍了如何运用QR算法进行矩阵的QR分解,并通过迭代过程精确地求解出任意大小矩阵的所有特征值。 将一个矩阵转化为上Hessenberg矩阵后,再使用QR分解求解该矩阵的全部特征值。