Advertisement

Buck电路在电源技术中减少开关电源纹波的方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文探讨了Buck电路在现代电源技术中的应用,并详细介绍了如何通过优化设计来减小开关电源的纹波,提高系统稳定性与效率。 在电源技术领域内,Buck电路作为一种常见的开关电源拓扑结构因其高效、电压可调及体积小等特点被广泛应用。然而,与之相伴的问题是输出直流电压中的纹波含量较高,这不仅影响了电源的稳定性,也可能对负载设备造成干扰。因此,降低纹波含量成为优化开关电源性能的关键技术挑战。 1. 纹波定义: 纹波是指在直流电源输出电压中叠加的交流成分,通常包括低频、高频以及由开关过程产生的超高频谐振等类型。这些纹波来源于内部电路中的谐波干扰、变压器漏感及二极管反向恢复电流等因素,并表现为输出电压波动。 2. Buck电路纹波产生机理及其计算: 在Buck电路中,电感L的电流变化导致了纹波电流ΔiL的形成,在开关周期内完成。通过分析导通和关断状态下的电感电压变化可以得出纹波电流的具体数值。而产生的纹波电压Vr则由两个部分组成:一是由于电容C上的电流波动所引起的,二是ESR(等效串联电阻)造成的压降。 3. 影响因素及抑制措施: - 开关频率fs:提高开关频率有助于降低纹波水平但会增加损耗。 - 输出电容C的大小:增大该值能减少纹波但成本上升,并且在高频下,ESR的影响更为显著。 - ESER(等效串联电阻):减小这一数值是抑制纹波的关键途径之一。可以通过选择低ESR电容器或并联多个电容器来实现此目标。 - 开关占空比D:适当调节可以调整纹波大小但需保证输出电压需求。 4. 改善措施: - 使用具有较低ESER的电解与陶瓷复合型电容,以整体降低电阻值; - 增加滤波器中的电容器容量来提高电流平滑效果; - 设计合理的开关频率,在减少纹波的同时考虑损耗问题; - 应用软开关技术来减小因快速切换而产生的瞬态电压和电流峰值现象。 - 采用多级过滤方案,如LC型滤波器进一步降低输出中的波动幅度。 通过理解Buck电路中导致纹波的原因并采取合理的设计与参数优化策略,可以有效抑制纹波从而提升开关电源的性能。实际应用时需综合考虑效率、成本和体积等多重因素以确定最优解决方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Buck
    优质
    本文探讨了Buck电路在现代电源技术中的应用,并详细介绍了如何通过优化设计来减小开关电源的纹波,提高系统稳定性与效率。 在电源技术领域内,Buck电路作为一种常见的开关电源拓扑结构因其高效、电压可调及体积小等特点被广泛应用。然而,与之相伴的问题是输出直流电压中的纹波含量较高,这不仅影响了电源的稳定性,也可能对负载设备造成干扰。因此,降低纹波含量成为优化开关电源性能的关键技术挑战。 1. 纹波定义: 纹波是指在直流电源输出电压中叠加的交流成分,通常包括低频、高频以及由开关过程产生的超高频谐振等类型。这些纹波来源于内部电路中的谐波干扰、变压器漏感及二极管反向恢复电流等因素,并表现为输出电压波动。 2. Buck电路纹波产生机理及其计算: 在Buck电路中,电感L的电流变化导致了纹波电流ΔiL的形成,在开关周期内完成。通过分析导通和关断状态下的电感电压变化可以得出纹波电流的具体数值。而产生的纹波电压Vr则由两个部分组成:一是由于电容C上的电流波动所引起的,二是ESR(等效串联电阻)造成的压降。 3. 影响因素及抑制措施: - 开关频率fs:提高开关频率有助于降低纹波水平但会增加损耗。 - 输出电容C的大小:增大该值能减少纹波但成本上升,并且在高频下,ESR的影响更为显著。 - ESER(等效串联电阻):减小这一数值是抑制纹波的关键途径之一。可以通过选择低ESR电容器或并联多个电容器来实现此目标。 - 开关占空比D:适当调节可以调整纹波大小但需保证输出电压需求。 4. 改善措施: - 使用具有较低ESER的电解与陶瓷复合型电容,以整体降低电阻值; - 增加滤波器中的电容器容量来提高电流平滑效果; - 设计合理的开关频率,在减少纹波的同时考虑损耗问题; - 应用软开关技术来减小因快速切换而产生的瞬态电压和电流峰值现象。 - 采用多级过滤方案,如LC型滤波器进一步降低输出中的波动幅度。 通过理解Buck电路中导致纹波的原因并采取合理的设计与参数优化策略,可以有效抑制纹波从而提升开关电源的性能。实际应用时需综合考虑效率、成本和体积等多重因素以确定最优解决方案。
  • Buck抑制
    优质
    本研究探讨了在Buck电路中的开关电源系统中减少电压和电流纹波的技术方法。通过优化电路设计与控制策略,旨在提高系统的稳定性和效率。 本段落通过分析Buck电路中的元器件计算公式,推导出纹波电压和电流的计算方法,并根据影响因素对电感量和电容量的选择进行比较,从而得出抑制纹波的方法。
  • Buck-BoostBuck级联应用
    优质
    本文探讨了Buck-Boost电路和Buck电路在现代电源技术中的级联使用方法及其优势,详细分析了该组合在电压调节和转换效率方面的表现。 将Buck-Boost电路与Buck电路级联组合后,其等效转换与演化过程如图所示。在演化过程中,在两级之间加入阻塞二极管D3以阻止前级对后级的有害回路影响。经过这一系列变化,从最初的电路(a)到最终形式的电路(e),转换器的输出输入电压关系发生了相应的变化。
  • BuckProteus仿真
    优质
    本项目通过Proteus软件对Buck电路在开关电源中的应用进行仿真分析,探讨其工作原理及性能特性。 关于开关电源buck电路的Proteus仿真模拟。
  • Buck计算与抑制研究.pdf
    优质
    本文探讨了在Buck电路中的开关电源纹波问题,深入分析其产生的原因,并提出有效的计算方法和抑制策略,以提高电源系统的稳定性和效率。 本段落基于对Buck电路原理的分析,重点推导了纹波电流和电压的计算公式,并通过这些公式的分析找出影响纹波产生的因素以及相应的改善措施。
  • UC3842保护障碍分析
    优质
    本文深入探讨了基于UC3842芯片设计的开关电源电路中常见的保护机制及其面临的挑战,旨在为提高电源系统的稳定性和可靠性提供理论依据和技术指导。 使用UC3842构建的开关电源通常包含过载与短路保护机制,该机制通过在开关管源极串联一个电阻(R4),并将电流信号传递至3842芯片的第3脚来实现。当发生过载情况时,3842会启动保护功能,减小占空比并降低输出电压。这会导致辅助供电电压Vaux下降到不足以维持电路工作的水平,从而关闭整个电源系统,并通过R1和R2重新开始下一次启动过程。这种模式被称为“打嗝”式(hiccup)保护。 在此状态下,电源仅在每个开关周期短暂工作几秒后进入长时间的重启准备阶段(几百毫秒至数秒),平均功率消耗非常低。因此,在持续短路的情况下,该设计能够避免电源损坏的风险。需要注意的是,由于漏感等因素的影响,某些开关电源可能在每一个开关周期内产生显著的尖峰电压现象;即使占空比已经降低到很低水平时,辅助供电电压Vaux仍然可能会受到影响。
  • 明伟12V原理分析
    优质
    本文将深入探讨明伟公司生产的12V开关电源电路的工作原理及其在现代电源技术领域的应用价值,旨在为相关技术人员提供理论参考与实践指导。 该开关电源是一款小功率设备,输入电压为220V交流电,输出12V直流电,并且最大输出电流可达1.3A。它主要用于小型设备的供电,例如楼宇监控系统等。 其核心控制器件是脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器和逻辑控制器),具备过流保护及欠压保护功能,并且最高工作频率可达500MHz。启动电流仅为1mA,具体引脚功能如下: - 第一脚为内部误差放大器的输出端,通常与第二脚之间连接反馈网络以确定误差放大器增益。 - 第二脚是反馈电压输入端,作为内部误差放大器反相输入端,通过比较同相输入端基准电压(+2.5V)来产生控制脉冲宽度的误差控制电压。
  • 串联式储能滤计算
    优质
    本文探讨了在串联式开关电源系统中,如何精确计算所需储能滤波电容器的关键参数与设计方法,以优化电路性能和稳定性。 1-2-4.串联式开关电源储能滤波电容的计算 我们从流过储能电感的电流为临界连续状态开始分析,探讨储能滤波电容C在充放电过程中的特性,并据此计算其数值。 图1-6展示了当串联式开关电源工作于临界连续电流状态下,电路中各点电压和电流的变化情况。其中Ui表示输入电压,uo是控制开关K的输出电压,Uo为电源滤波后的输出电压,iL代表流过储能电感的电流,Io则是负载上的电流。图1-6-a)显示了控制开关K的输出电压变化;图1-6-b)呈现的是储能滤波电容C充放电的过程;而图1-6-c)则描绘了流经储能滤波电感iL的变化曲线。 当串联式开关电源处于临界连续电流状态时,我们对电路的工作原理进行详细分析。
  • Boost-Buck介绍
    优质
    简介:本文介绍了Boost-Buck电路的工作原理及其在开关电源中的应用。通过分析其特点和优势,探讨了该技术在未来电子设备中的潜在价值和发展趋势。 开关电源是一种高效的电力转换设备,在电子系统中扮演着重要角色。Boost-Buck电路是其中一种常见的拓扑结构,它能够实现升压(boost)和降压(buck)两种功能。这种电路通过控制功率半导体器件的导通与关断状态来调节输出电压,具有较高的效率和灵活性。 Boost 电路用于将输入电压提升到更高的水平;而 Buck 电路则相反,它可以降低高电平输入以获得所需的较低直流输出电压。这两种模式可以通过改变开关频率或占空比实现无缝切换,使得 Boost-Buck 变换器在多种应用场景中表现出色,如可再生能源系统、电动汽车和便携式电子设备等。 Boost-Buck 电路的设计需要考虑诸多因素,包括效率优化、电磁兼容性(EMC)、热管理以及安全标准。通过精心设计与选择合适的元器件,可以充分发挥这种开关电源的优势,并满足各种复杂的应用需求。
  • 反激输出计算应用
    优质
    本文章介绍了反激式开关电源中输出电容的计算方法及其重要性,并探讨了其在提高电源效率和稳定性方面的实际应用。 1. 设定开关工作频率为60kHz,并设定输出电流Io为1A;根据变压器参数及输入、输出电压计算得出实际最大占空比Dmax为0.457。 2. 计算关断时间Toff和导通时间Ton: Toff = 1/f * (1 - Dmax) = 9.05微秒 Ton = 1/f * Dmax = 7.62微秒 3. 根据反激式电路的输出波形,计算所需输出电容量。 4. 输出电压在t1到t2时间段内下降。假设输出纹波为120mV,则: 5. 纹波电流通常取值范围是输出电流的5%至20%,即Inppl=20%*1A = 0.2A,这意味着每个电解电容需要承受的最大纹波电流为0.2A。因此设计满足要求。