Advertisement

NS方程的推导

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《NS方程的推导》是一篇详细讲解Navier-Stokes方程建立过程的文章,深入浅出地介绍了流体力学中这一核心方程的数学基础和物理意义。 NS方程的推导过程非常实用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • NS
    优质
    《NS方程的推导》是一篇详细讲解Navier-Stokes方程建立过程的文章,深入浅出地介绍了流体力学中这一核心方程的数学基础和物理意义。 NS方程的推导过程非常实用。
  • 差递公式
    优质
    本文介绍了如何从基本原理出发,逐步推导出适用于样本数据的方差递推公式。通过简洁明了的方式阐述计算过程中每一步的意义和作用,旨在帮助读者深入理解统计学中的这一重要概念,并能灵活应用于实际的数据分析场景中。 在一般的数学统计过程中,求方差需要先知道所有的数据项,并通过计算均值然后遍历所有数据来得到平方和以确定方差。然而,在处理大数据或流式数据的场景下,我们无法预先得知全部的数据项。在这种情况下,通常要求能够在任意时刻动态地获取当前存量数据集的方差。如果采用传统的遍历方法,则会消耗大量的计算资源,并且缓存所有数据也会占用大量存储空间。 因此,我们需要使用递推的方式来更新状态信息:通过利用先前的状态(包括均值、方差和计数)与新的数据项来逐步求得当前阶段下的方差。具体来说,可以通过以下步骤实现这一目标: 1. 初始状态下设定初始的计数值为0以及零方差。 2. 当接收到一个新数据点时,首先更新总体样本的数量(即递增计数器)。 3. 接着根据已知信息和新输入的数据项来调整均值和方差等统计量。 采用这种递推方法可以有效地在不存储全部历史记录的情况下实时计算出当前时刻的方差。
  • N-S.pdf
    优质
    本PDF文档详细介绍了纳维叶-斯托克斯(N-S)方程的数学推导过程,涵盖流体动力学基础、控制体积分析及动量守恒原理等内容。 N-S方程的推导基于流体力学的基本原理,包括质量守恒、动量守恒以及能量守恒定律。这些方程描述了不可压缩或可压缩流体在各种条件下的流动特性,并且是研究空气动力学、海洋工程和气象科学等领域的重要工具。
  • 无痛NS.pdf
    优质
    《无痛NS方程》是一篇深入浅出解析Navier-Stokes方程原理及其应用的文章,旨在帮助读者轻松理解流体力学中的这一核心概念。 本笔记素材主要来源于为参加东岳流体权杆课程的同学准备的预习资料。内容从最基本的守恒法则开始逐步推导李札杓方程,过程详实且简明(约十余页),是易于理解的入门补充资料。
  • 气泡动力学
    优质
    本篇文章详细介绍了气泡动力学方程从基础物理原理出发的推导流程,深入浅出地阐述了在不同条件下气泡运动的特点及其背后的数学逻辑。适合对流体力学感兴趣的读者阅读和学习。 气泡动力学是流体力学的一个重要分支领域,主要研究在液体中的气泡形成、运动、变形及破裂过程,在工业、生物医学、声学以及海洋工程等多个学科中得到广泛应用。 本主题将深入探讨气泡动力学方程的推导流程,包括RP方程(Rayleigh-Plesset equation)、Keller-Kolodner方程和KB模型。其中,RP方程由Rayleigh提出,用于描述小尺寸气泡在液体中的动态行为。该方程式考虑了内部压力、表面张力以及外部环境的压力等因素,并假设气泡为球形且忽略粘性效应的影响。通过能量守恒与动量守恒原理推导得出: \[ \frac{d^2r}{dt^2} = -\frac{1}{r}\left(P_{infty} + P_v - \frac{4\sigma}{r} - \frac{4\pi r^2}{c^2}\left(\frac{dp}{dt}\right)\right) \] 其中,\( r \) 表示气泡半径,\( t \) 为时间变量,\( P_{infty} \) 是外部液体的压力值,\( P_v \) 指的是气泡内部气体的饱和蒸气压强,而 \( c \) 则是液体内声波传播的速度。 随后介绍Keller-Kolodner方程。该模型是对大振幅气泡动力学的一种近似解法,在RP方程的基础上加入了非线性效应以更准确地描述快速膨胀与收缩过程中的内部气体温度变化情况,特别适用于模拟超声空化现象等复杂场景: \[ \frac{\partial^2 r}{\partial t^2} + \frac{3}{2r}\left(\frac{\partial r}{\partial t}\right)^2 = -\frac{1}{r}\left(P_{infty} + P_v - \frac{4\sigma}{r} - \frac{4\pi r^2}{c^2}\frac{\partial P_g}{\partial t}\right) \] 这里,\( P_g \) 表示气泡内部气体的压力值。 此外还有KB模型(冲击波传播理论),由Keller和Brenner提出。此模型旨在描述气泡崩溃过程中产生的高速冲击波现象,并考虑了快速能量释放以及由此引发的局部压力脉冲效应,在解决水下爆炸、声纳系统等问题时具有重要意义。 通过以上方程的推导,研究者能够更深入地理解液体中气泡的行为特性,从而实现更加精确的应用预测与控制。这些理论工具对于科学家和工程师来说至关重要,有助于解决诸如微泡药物传递技术、超声清洗以及水下爆炸效应等实际工程问题。
  • 单基地雷达.pptx
    优质
    本PPT探讨了单基地雷达系统的原理,详细解析并推导了单基地雷达方程,涵盖信号传输、反射及接收过程中的关键因素。 内有详细的单基地雷达方程推导。
  • ECL EKF 在 PX4 中.pdf
    优质
    本文档详细探讨了ECL EKF方程在PX4自动驾驶系统中的数学推导过程及其应用,为开发者和研究人员提供了深入理解该算法的基础。 ### PX4的ECL EKF方程推导详解 #### 一、引言 随着无人机技术的发展,飞行控制软件的重要性日益凸显。PX4作为一款开源的无人机自动驾驶系统,因其高度可定制性和强大的功能而受到广泛欢迎。其中,扩展卡尔曼滤波器(Extended Kalman Filter, EKF)是实现高精度导航的关键技术之一。本段落将深入探讨PX4中的ECL(Estimation Control Library)模块中EKF的具体实现与方程推导过程。 #### 二、EKF基础知识 ##### 2.1 扩展卡尔曼滤波器简介 扩展卡尔曼滤波器是在卡尔曼滤波基础上发展起来的一种非线性状态估计方法。其基本思想是利用非线性系统的动态模型和观测模型,通过线性化的方式对系统的状态进行估计。在无人机导航领域,EKF被广泛应用于融合多种传感器数据,提高位置、速度等导航参数的精度。 ##### 2.2 EKF的工作原理 1. **预测阶段**:根据上一时刻的状态估计值和控制输入,预测当前时刻的状态。 2. **更新阶段**:利用当前时刻的观测值对预测值进行修正,得到更精确的状态估计。 #### 三、PX4中的ECL模块 PX4中的ECL模块主要用于实现各种状态估计算法,包括但不限于EKF。该模块提供了灵活的接口和丰富的配置选项,使得用户可以根据具体应用场景选择合适的算法。 ##### 3.1 ECL的主要特点 1. **模块化设计**:遵循模块化原则的设计便于扩展和维护。 2. **高性能优化**:针对无人机导航需求进行了专门优化,确保实时性和准确性。 3. **易于集成**:提供了简单易用的API,方便与PX4其他模块集成。 #### 四、EKF方程推导 在PX4中,EKF的核心在于动态模型和观测模型的建立以及状态向量的选择。 ##### 4.1 动态模型 假设系统的动态方程为: \[ x_{k} = f(x_{k-1}, u_{k-1}) + w_{k-1} \] 其中,\(x_k\)表示第 \( k \) 时刻的状态向量,\(u_{k-1}\)为控制输入向量,\(w_{k-1}\)为过程噪声,\(f(\cdot)\)为非线性函数。 ##### 4.2 观测模型 假设观测方程为: \[ z_k = h(x_k) + v_k \] 其中,\(z_k\)表示第 \( k \) 时刻的观测值,\(v_k\)为测量噪声,\(h(\cdot)\)为非线性函数。 ##### 4.3 状态向量选择 对于无人机导航而言,通常选择的状态向量包括位置、速度和姿态角等关键参数。 ##### 4.4 预测与更新方程 1. **预测方程**: - 状态预测:\( \hat{x}_{k|k-1} = f(\hat{x}_{k-1|k-1}, u_{k-1}) \) - 协方差预测:\( P_{k|k-1} = F_{k-1}P_{k-1|k-1}F^T_{k-1} + Q_{k-1} \) 2. **更新方程**: - 卡尔曼增益:\( K_k = P_{k|k-1}{H}_k^T(H_k{P}_{k|k-1}{H}_k^T + R_k)^{-1} \) - 状态更新:\( \hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(z_k - h(\hat{x}_{k|k-1})) \) - 协方差更新:\( P_{k|k} = (I - K_kH_k)P_{k|k-1} \) 其中,\(F_k\)为状态转移矩阵,\(H_k\)为观测矩阵,\(Q_k\)和 \(R_k\)分别为过程噪声协方差和测量噪声协方差。 #### 五、总结 本段落介绍了PX4中的ECL EKF模块的核心算法及其在无人机导航系统中的应用。通过深入理解动态模型与观测模型的建立及状态向量的选择方法,读者可以更好地掌握这些关键技术,并应用于复杂的实际场景中,实现更加精准的导航性能。对于希望深入了解无人机导航系统的开发者来说,本段落提供了重要的理论基础和实用指导。 未来的发展方向包括在更多复杂环境中的应用以及算法优化以提高鲁棒性和精度。
  • PX4ECL EKF2详解.pdf
    优质
    本PDF文档详细解析了开源飞行控制器PX4中ECL EKF2的核心算法和方程推导过程,适合无人机开发者和技术爱好者深入研究。 PX4是一个在无人机行业中广泛使用的成熟飞行控制软件平台,并包含了多个模块。其中ECL(Estimation and Control Library)是其重要组成部分之一,而EKF2则是该库中的一个基于扩展卡尔曼滤波器的算法,用于估计包括位置、速度和姿态在内的机体状态。 理解并掌握ECLEKF2对于无人机开发者与爱好者来说非常重要。以下是对ECLEKF2相关知识的详细解释: 首先需要了解的是基础原理——卡尔曼滤波器(Kalman Filter)。该技术能够从含有噪声的一系列测量数据中估计动态系统的状态,具有高效性。它在每个时刻执行两个步骤:时间更新和测量更新。 EKF是扩展版本的卡尔曼滤波器,在非线性系统中的应用更为广泛。由于无人机运动方程通常是非线性的,因此ECLEKF2提供了对这些复杂情况下的本地化处理方法。通过计算状态转移矩阵F、控制输入矩阵G以及观测矩阵H的雅克比矩阵来适应更加复杂的环境。 在EKF2算法中: 1. 时间更新(预测)步骤: - 预测状态估计:ˆxk|k−1=Fkˆxk−1|k−1 - 预测协方差估计:Pk|k−1=FkPk−1|k−1FTk+Qk 2. 测量更新(校正)步骤: - 创新或测量残差:˜yk=zk-Hkˆxk|k-1 - 创新协方差估计:Sk=HkPk|k-1HTK+RK - 最佳卡尔曼增益:Kk=Pk|k−1HTKSK^-1 - 更新状态估计:ˆXkk=ˆxkk−1+Ky˜y - 更新协方差:Pkk=(I-KKH)Pkk-1 其中,Qk是过程噪声的协方差矩阵,Rk则是观测误差的协方差矩阵。雅克比矩阵涉及对状态转移函数f和观测函数h关于变量x、u以及w求偏导数的过程。 ECLEKF2还能够处理不同传感器提供的测量值,并且可以在不同的操作模式下运行以适应各种组合的传感器数据输入。在系统启动时,它会评估可用的传感器配置并选择适当的初始对准过程后进入相应的测量模式中工作。 综上所述,EKF2是一个高效的非线性系统的状态估计器,在PX4飞控平台里扮演着重要角色。它的主要优点在于结合了动力学模型与观测数据,并通过局部化技术将复杂的非线性问题简化为简单的线性形式处理。掌握ECLEKF2算法对于解决无人机系统中的状态估算问题是至关重要的,开发者需要根据具体的应用场景调整相应的矩阵参数以获得最佳效果。
  • 偏微分视角下扩散
    优质
    本文从偏微分方程的角度出发,详细探讨并推导了扩散方程的基本原理与数学模型,旨在为读者提供一个清晰、系统的理解框架。 二、扩散方程 由于浓度分布的不均匀性,物质会从高浓度区域向低浓度区域移动,这种现象被称为扩散。