Advertisement

yolov8-rknn板端C++部署源码(适用于RK3588,最简最快部署方案).zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本资源提供YOLOv8模型在Rockchip RK3588平台上的C++部署代码及最简配置,旨在实现快速高效的板端推理。 【资源说明】 1. 该项目中的代码在经过测试并确保功能正常后才上传,请放心下载使用。 2. 适用人群:主要面向计算机相关专业(如计算机科学、信息安全、数据科学与大数据技术、人工智能、通信工程、物联网等)的学生或企业员工,具有较高的学习和参考价值。 3. 不仅适合初学者进行实战练习,也适用于大作业项目、课程设计及毕业设计的展示。欢迎下载并相互交流,共同进步!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • yolov8-rknnC++RK3588).zip
    优质
    本资源提供YOLOv8模型在Rockchip RK3588平台上的C++部署代码及最简配置,旨在实现快速高效的板端推理。 【资源说明】 1. 该项目中的代码在经过测试并确保功能正常后才上传,请放心下载使用。 2. 适用人群:主要面向计算机相关专业(如计算机科学、信息安全、数据科学与大数据技术、人工智能、通信工程、物联网等)的学生或企业员工,具有较高的学习和参考价值。 3. 不仅适合初学者进行实战练习,也适用于大作业项目、课程设计及毕业设计的展示。欢迎下载并相互交流,共同进步!
  • YOLOv8在瑞芯微RK3588C++(附使说明).zip
    优质
    本资源提供YOLOv8模型在瑞芯微RK3588开发板上的C++部署代码及详细使用指南,帮助开发者轻松完成目标检测应用的移植与优化。 【资源说明】YOLOv8部署瑞芯微RK3588板端c++源码(含使用说明) ## 编译和运行 1. **编译** ```bash cd examples/rknn_yolov8_demo_open bash build-linux_RK3588.sh ``` 2. **运行** ```bash cd install/rknn_yolov8_demo_Linux ./rknn_yolov8_demo ``` **注意:** 修改模型、测试图像和保存图像的路径,修改文件为src下的main.cc。 ### 测试效果 冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分) 说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的是 coco128 的128张图片数据进行训练,并且迭代的次数不多,效果并不是很好,仅供测试流程参考。 ### 注意事项 - 换其他图片测试检测不到属于正常现象。 - 最好选择coco128中的图像进行测试。 把板端模型推理和后处理时耗也附上,供参考。使用的芯片是rk3588。 【备注】 1. 该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2. 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶。 3. 当然也可作为毕设项目、课程设计、作业或项目初期立项演示等。如果基础还行,也可以在此代码基础上进行修改以实现其他功能,直接用于毕设、课设和作业也是可以的。 欢迎沟通交流,互相学习,共同进步!
  • RK3588上使Python和C++DeepLabV3模型
    优质
    本项目介绍在RK3588平台上利用Python和C++语言环境进行深度学习模型DeepLabV3的部署过程及优化策略,旨在探索高性能计算与机器视觉结合的最佳实践。 使用上一篇DeepLabV3训练的模型导出ONNX格式,并在ARM端进行部署。提供完整的部署工具链及第三方库支持,代码包含详细注释以方便理解与调试。同时附有详细的部署教程文档,确保用户能够顺利运行并通过测试验证其可行性。此外,该方案具备良好的可扩展性,在其他RK平台上的迁移和应用也较为简便。
  • C++中使OnnxRuntimeyolov8模型
    优质
    本文介绍了如何在C++环境中利用ONNX Runtime高效地部署YOLOv8模型,详细阐述了技术实现过程和关键步骤。 在C++环境中部署YOLO模型涉及几个关键步骤:首先需要获取YOLO的预训练权重文件,并确保这些文件与使用的代码版本兼容;其次,在C++项目中集成Darknet库,这是实现YOLO算法的基础框架之一;然后根据具体需求调整源码中的参数设置,比如输入图像大小、类别数等。部署过程中可能还需解决跨平台编译问题和性能优化挑战,以确保模型在目标设备上高效运行。
  • C++中使OnnxRuntimeyolov8模型
    优质
    本文章介绍了如何在C++环境下利用ONNX Runtime高效地部署YOLOv8模型,为开发者提供了一种将先进目标检测技术集成到应用中的方法。 YOLO(You Only Look Once)是一种流行的实时目标检测算法,其最新版本为YOLOv8。OnnxRuntime是由Microsoft开发的一个高性能的推理引擎,用于执行机器学习模型,包括YOLO模型。在C++环境中利用OnnxRuntime部署YOLOv8模型能够实现高效的计算机视觉任务处理。 首先了解YOLOv8模型:它是对前几代YOLO算法的改进版本,提高了检测速度和精度。训练过程通常涉及预处理、选择合适的训练集、损失函数以及优化器等步骤。完成训练后,我们得到一个.onnx格式的模型文件,并可以将其用于OnnxRuntime的部署。 接下来是关于OnnxRuntime的一些介绍:它支持多种平台及硬件加速如CPU、GPU和AI加速器。C++ API允许开发者在应用程序中集成模型推理功能。需要安装OnnxRuntime库并确保其与你的开发环境兼容。 以下是使用OnnxRuntime部署YOLOv8的步骤: 1. 引入依赖项:包含必要的头文件,并链接所需的库,保证使用的版本与操作系统和编译器相匹配。 2. 创建会话:初始化运行时环境,加载模型文件并创建一个用于执行推理任务的会话。 3. 预处理图像数据:YOLOv8需要特定格式的数据输入。这包括调整尺寸、归一化像素值等操作以满足模型需求。 4. 分配输入张量:为预处理后的数据分配内存,并准备好传递给模型进行预测。 5. 运行推理任务:将准备好的输入数据提供给会话,执行推断并获取输出结果。 6. 后处理步骤:对模型的原始输出进行解码和进一步处理以获得最终目标检测的结果。 7. 释放资源:完成所有操作后,确保正确地清理分配的所有内存和其他资源。 需要注意的是,在利用GPU加速时,请确认OnnxRuntime已配置为使用GPU,并且系统中安装了必要的CUDA和cuDNN库。通过以上步骤可以在C++环境中高效部署YOLOv8模型并实现实时目标检测功能。在实际应用过程中,可能还需要处理多线程、并发控制及性能优化等问题以适应不同的应用场景需求。
  • 在Jetson上YOLOv8
    优质
    本文章介绍了如何在NVIDIA Jetson平台上成功部署和运行YOLOv8模型的过程,包括环境配置、代码实现及优化技巧。 部署YOLOv8到Jetson设备上需要遵循特定的步骤来确保环境配置正确,并且能够顺利运行深度学习模型。这通常包括安装必要的依赖库、设置CUDA和cuDNN支持,以及下载和编译YOLOv8代码。整个过程可能涉及多个技术细节,如选择合适的Python版本,解决硬件兼容性问题等。
  • Jetson NanoYolov8.html
    优质
    本页面介绍了如何在NVIDIA Jetson Nano开发板上部署和运行YOLOv8模型,适用于希望在资源受限设备上实现高效目标检测的应用开发者。 本段落介绍了如何在Jetson nano上部署Yolov8的方法。