
贝叶斯过滤和平滑 Bayesian Filtering and Smoothing
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
《贝叶斯过滤与平滑》一书深入浅出地介绍了贝叶斯方法在时间序列分析中的应用,涵盖状态空间模型、卡尔曼滤波器及其扩展。
贝叶斯滤波与平滑是基于概率统计理论的动态系统状态估计方法,广泛应用于导航、航空工程、电信和医学等领域。这些技术利用贝叶斯定理,在存在噪声的情况下提供最佳的状态估计。
在状态估计中,滤波是指通过一系列观测数据计算当前系统的状态值;而平滑则是指根据历史时刻的数据来估算过去某个时间点的系统状态值。它们的核心在于结合先验知识和新的观测信息更新概率分布,从而提高对动态系统状态预测的准确性。
贝叶斯方法包括非线性卡尔曼滤波器(适用于线性模型)及粒子滤波器(针对非线性情况)。粒子滤波器通过一组带有权重的随机样本表示后验概率,并根据新的观测数据调整这些样本,以逼近真实的分布。结合这两种技术可以优化估计精度。
贝叶斯框架下的参数估计方法对于提升性能至关重要。将高级的贝叶斯参数估计与先进的算法相结合,能够处理复杂的动态系统问题。
学习和实践贝叶斯滤波和平滑时,MATLAB提供了强大的仿真工具支持用户进行实际计算,并促进对这些技术的理解和应用。
Simos Särkkä教授是芬兰阿尔托大学生物医学工程及计算科学系的高级研究员。他的研究领域集中在随机动态系统的状态与参数估计,在信号处理、机器学习等领域有广泛应用,如脑成像、定位系统等。
贝叶斯滤波和平滑技术的应用范围广泛:
- 导航:提供精确的位置和速度信息。
- 航空航天工程:对飞行器的运动进行精准估算。
- 电信:在无线通信中提高信号处理质量。
- 医学:用于分析心电图、脑电波等生物医学信号。
- 工业过程控制:确保生产流程稳定与可靠。
这些技术能够使系统状态估计更加精确和稳定,对于现代自动化及信息化社会具有重要意义。随着计算能力的增强以及算法的发展,贝叶斯滤波和平滑在未来将发挥更大的作用。
全部评论 (0)


